Фейнмановские лекции по физике 2 (Фейнман) - страница 34

, а мы наблюдаем за ним из космического корабля, который сам имеет скорость u, и обозначаем соответствующие величины штрихами. Для простоты сперва мы рассмотрим случай, когда скорость vнаправлена по скорости и. (Более общий случай мы рассмотрим позже.) Чему равна скорость тела v' по измерениям из космического корабля? Эта скорость равна «раз­ности» между vи u. По прежде полученному нами закону

v’=(v-u)/(1-uv’) (17-8)

Теперь подсчитаем, какой окажется энергия Е' по измерениям космонавта. Он, конечно, воспользуется той же массой покоя, но зато скорость станет v'. Он возведет v' в квадрат, вычтет из единицы, извлечет квадратный корень и найдет обратную величину

Энергия Е' просто равна массе m>0, умноженной на это выражение. Но нам хочется выразить энергию через нештри­хованные энергию и импульс. Мы замечаем, что

или



Мы узнаем в этом выражении знакомое нам преобразование


Теперь мы должны найти новый импульс р>х. Он равен энергии Е', умноженной на v', и так же просто выражается через Е и р:


и мы опять распознаем в этой формуле знакомое нам

Итак, преобразование старых энергии и импульса в новые энергию и импульс в точности совпало с преобразованием tи х в t' и х и tв х': если мы в уравнениях (17.4) будем писать Е каждый раз, когда увидим t, а вместо x: всякий раз будем под­ставлять р>х, то уравнения (17.4) превратятся в уравнения (17.10) и (17.11). Если все верно, то это правило предполагает добавочные равенства р'>у=-р>yи р'>z>z. Чтобы их доказать, надо посмотреть, как преобразуется движение вверх или вниз. Но как раз в предыдущей главе мы рассмотрели такое движение. Мы анализировали сложное столкновение и заметили, что по­перечный импульс действительно не меняется при переходе в движущуюся систему координат. Стало быть, мы уже убе­дились, что р'>у>уи p>z=p>z. Итак, полное преобразование равно

Таким образом, эти преобразования выявили четыре ве­личины, которые преобразуются подобно х, у, z, t. Назовем их четырехвектор импульса. Так как импульс — это четырехвектор, его можно изобразить на диаграмме пространства-времени движущейся частицы в виде «стрелки», касательной к пути (фиг. 17.4).


Фиг. 17.4. Четырехвектор импульса частицы.

У этой стрелки временная компонента дает энергию, а пространственные — тривектор импульса; сама стрелка «реальнее», чем один только импульс или одна лишь энергия: ведь и импульс, и энергия зависят от нашей точки зрения.

§ 5. Алгебра четырехвекторов

Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах