Фейнмановские лекции по физике 2 (Фейнман) - страница 35

>х>,p>у, р>z;можно писать и короче р>i>, оговаривая, что iпринимает три значения х, у и z. Для четырехвекторов мы будем при­менять похожее обозначение: будем писать р>m , а m. пусть заменяет собой четыре направления t, x, у, z.

Конечно, можно пользоваться любыми обозначениями. Не улыбайтесь, что мы так много говорим об обозначениях; учи­тесь изобретать их: в них вся сила. Ведь и сама математика в значительной степени состоит в изобретении лучших обозна­чений. Идея четырехвектора — это тоже усовершенствование обозначений с таким расчетом, чтобы преобразования было легче запомнить.

Итак, А>mэто общий четырехвектор, р>mчетырехимпульс, p>tэнергия, р>х— импульс в направлении х, р>yв направ­лении у, p>z— в направлении z. Складывая четырехвекторы, складывают их соответствующие компоненты.

Если четырехвекторы связаны каким-то уравнением, то это значит, что уравнение выполняется для любой компоненты. Например, если закон сохранения тривектора импульса со­блюдается в столкновении частиц, т. е. сумма импульсов множе­ства взаимодействующих или сталкивающихся частиц по­стоянна, то это означает, что сумма всех компонент импульсов постоянна и в направлении х, и в направлении у, и в направ­лении 2. Сам по себе такой закон в теории относительности невозможен: он неполон; это все равно, что говорить только о двух компонентах тривектора. Неполон он потому, что при повороте осей разные компоненты смешиваются, значит, в закон сохранения должны войти все три компоненты. Таким образом, в теории относительности нужно дополнить закон сохранения импульса, включив в него сохранение временной компоненты. Абсолютно необходимо, чтобы сохранение первых трех компонент сопровождалось сохранением четвертой, иначе не получится релятивистской инвариантности. Четвертое урав­нение — это как раз сохранение энергии; оно должно сопровож­дать сохранение импульса для того, чтобы четырехвекторные соотношения в геометрии пространства-времени были спра­ведливы. Итак, закон сохранения энергии и импульса в че­тырехмерном обозначении таков:


или в чуть измененных обозначениях:


где i=l, 2, ... относится к сталкивающимся частицам, j=1, 2,... — к частицам, возникающим при столкновении, а m=x, у, zили t. Вы спросите: «А что по осям координат?» Это неважно. Закон верен для любых компонент, при любых осях.

В векторном анализе нам встретилось одно понятие — ска­лярное произведение двух векторов. Что соответствует ему в пространстве-времени? При обычных вращениях неизменной остается величина x>2+y>2+z>2. В четырехмерном мире таким свойством при преобразованиях обладает величина