Фейнмановские лекции по физике 2 (Фейнман) - страница 36

>2-х>2-у>2-z>2 [уравнение (17.3)]. Как можно это записать? Можно было бы, например, пользоваться значком наподобие
, но обычно пишут

Штрих при S напоминает, что первый, «временной» член по­ложителен, а остальные три отрицательны. Эта величина одна и та же в любой системе координат, и можно назвать ее квадратом длины четырехвектора. Чему равен, например, квадрат длины четырехвектора импульса отдельной частицы?

Ответ: р>2>t-р>2>x-Р>2>у-p>2>z, или, иначе, Е>2>2, потому что p>tэто и есть Е. Чему равно Е>2-р>2? Должно по условию получиться что-то, что одинаково в любой системе координат, в частности и в системе координат, которая движется вместе с частицей, так что частица в этой системе покоится. Но если частица неподвижна, значит, у нее нет импульса. Значит, у нее остается только энергия, совпадающая в этом случае с ее массой. Итак, Е>2-р>2=m>2>0, т. е. квадрат длины четырехвектора импульса равен m>2>0.


Пользуясь выражением для квадрата вектора, легко изоб­рести скалярное произведение двух четырехвекторов: если один из них а>m , а другой b>m, то скалярное произведение опре­деляется так:

Это выражение не меняется при преобразовании системы коор­динат.

Следует еще упомянуть о частицах с нулевой массой покоя, например о фотоне — частице света. Фотон похож на частицу тем, что он переносит энергию и импульс. Энергия фотона равна произведению некоторой постоянной (постоянная Планка) на частоту света: E,=hv. Такой фотон несет с собой и импульс, который (как у всякой частицы) равен постоянной h, деленной на длину волны света: p=h/l. Но у фотона связь между ча­стотой и длиной волны вполне определенна: vc/l. (Количество волн, проходящих за 1 сек, помноженное на их длину, даст расстояние, проходимое светом в 1 сек, т. е. с.) Мы сходу получаем, что энергия фотона равна его импульсу, умноженному на с, и, далее, полагая с = 1, что энергия равна импульсу. Но это и значит, что масса покоя равна нулю. Давайте вдумаемся в это любопытное обстоятельство. Если фотон — частица с нулевой массой покоя, то что с ним бывает, когда он останав­ливается? Но он никогда не останавливается!Он всегда движется со скоростью с. Обычная формула для энергии — это m>0/Ц(1-v>2). Можно ли утверждать, что при m>0=0 и v=1 энергия фотона равна нулю? Нет, нельзя; на самом деле фотон может обладать (и обладает) энергией, хоть и не имеет массы покоя, за счет того, что всегда движется со скоростью света!

Мы знаем также, что импульс любой частицы равен про­изведению полной энергии на скорость: p=vEпри с=1, или, в обычных единицах, p=vE/c