Фейнмановские лекции по физике 5 (Фейнман) - страница 17

т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно гори­зонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят назва­ние «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.


Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, кото­рый является функцией ее положения (фиг. 2.2). Другой при­мер — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направ­лениях. Поток тепла — это величина, имеющая направление;

Фиг. 2.2. Скорости атомов вовращающемся теле — пример век­торного поля.

обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.


Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, про­ходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикуляр­ный к направлению потока. Вектор указывает направление потока (фиг. 2.3). В буквенных обозначениях: если DJ — теп­ловая энергия, протекающая за единицу времени сквозь эле­мент поверхности Dа, то

(2.9)

где е>f>единичный вектор направления потока Вектор h можно определить и иначе — через его компонен­ты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Аa>2 под некото­рым углом к поверхности Da>t, которая перпендикулярна к по­току. Единичный вектор n перпендикулярен к поверхности

Фиг.2.3.Тепловой потоквекторное поле. Вектор hуказывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент по­верхности, ориентированный попе­рек потока, деленную на площадь элемента поверхности.



Фиг. 2.4. Тепловые потоки сквозь>2 и сквозь Aa>1одинаковы.


>2. Угол q между n и h равен углу между поверхностями (так как h — нормаль к Da>1). Чему теперь равен поток тепла че­рез Dа>2на единицу площади? Потоки сквозь Dа>2 и Dа>1 равны между собой, отличаются только площади. Действительно, Dа