Фейнмановские лекции по физике 5 (Фейнман) - страница 23

h = - cСТ. (2.44)

(Знак минус написан потому, что тепло течет в сторону пониже­ния температуры.) Уравнение (2.44) — это дифференциальное уравнение теплопроводности в массиве вещества. Вы видите, что это чисто векторное уравнение. С обеих сторон стоят векторы (если xчисло). Это обобщение на произвольный случай частного соотношения (2.42), верного для прямоугольной плиты.

Мы с вами должны будем научиться выписывать все соот­ношения элементарной физики [наподобие (2.42)] в этих хитро­умных векторных обозначениях. Они полезны не только потому, что уравнения начинают от этого выглядетъ проще. В них намного яснее проступает физическое содержание уравнений безотносительно к выбору системы координат.

§ 7. Вторые производные векторных полей

Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно соста­вить несколько комбинаций:

(2.45)

Вы можете убедиться, что никаких иных комбинаций быть не может.


Посмотрим сперва на вторую комбинацию (б). Она имеет ту же форму, что и

АX(АT) = (АXА)T = 0, потому что АXА всегда нуль. Значит,

(2.46)

Можно понять, как это получается, если расписать одну из компонент:



что равно нулю [по уравнению (2.8)]. Это же верно и для других компонент. Стало быть, СХ(СT)=0 для любого распределе­ния температур, да и для всякой скалярной функции.

Возьмем второй пример. Посмотрим, нельзя ли получить нуль другим путем. Скалярное произведение вектора на век­торное произведение, содержащее этот вектор, равно нулю

А·(АХВ) = 0, (2.48)

потому что АХВ перпендикулярно к А и не имеет тем самым составляющих вдоль А. Сходная комбинация стоит в списке (2.45) под номером (г):

С(СXh) = div(roth) = 0. (2.49)

В справедливости этого равенства опять-таки легко убедиться, проделав выкладки на компонентах.

Теперь сформулируем без доказательства две теоремы. Они очень интересны и весьма полезны для физиков.

В физических задачах часто оказывается, что ротор какой-то величины (скажем, векторного поля А) равен нулю. Мы видели в уравнении (2.46), что ротор градиента равен нулю. (Это легко запоминается по свойствам векторов.) Далее, может оказаться, что А будет градиентом какой-то величины, потому что тогда ротор А с необходимостью обратится в нуль. Имеется интерес­ная теорема, утверждающая, что если ротор А есть нуль, то тогда А непременно окажется чьим-то градиентом; существует некоторое скалярное поле ш; (пси), такое, что A=gradш. Иными словами, справедлива

Т Е О Р Е М А

Если СXА = 0,

то имеется ш, (2.50)