Фейнмановские лекции по физике 5 (Фейнман) - страница 22

В качестве примера применения нашего векторного диф­ференциального оператора С выпишем совокупность вектор­ных уравнений, в которой содержатся те самые законы электро­магнетизма, которые мы словесно высказали в гл. 1. Их назы­вают уравнениями Максвелла.

Уравнения Максвелла

(2.41)

где r (ро) — «плотность электрического заряда» (количество заряда в единице объема), a j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классиче­скую теорию электромагнитного поля. Видите, какой элегант­ной и простой записи мы добились с помощью наших новых обозначений!

§ 6. Дифференциальное уравнение потока тепла

Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется со­вершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры Т>2>, а дру­гую охладить до Т>1 , то тепло потечет от T>2к Т>1(фиг. 2.7, а). Поток тепла пропорционален площади торцов А и разнице температур. Кроме того, он обратно пропорционален расстоя­нию между торцами. (Для заданной разницы температур чем тоньше плита, тем мощнее поток тепла.).



Фиг. 2.7. Тепловой по­ток через плиту (а) и бесконечно малая плит­ка, параллельная изо­термической поверхно­сти в большом блоке вещества (б).


Обозначая через Jтепловую энергию, проходящую сквозь плиту за единицу вре­мени, мы напишем

Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотерми­ческим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).

Если площадь этой плиты DА, то поток тепла за единицу времени равен


(2.42)

Коэффициент пропорциональности c (каппа) называется тепло­проводностью.


(2.43)

где Ds — толщина плиты. Но DJ/DA мы раньше определили как абсолютную величину h — вектора, направленного туда, куда течет тепло. Тепло течет от T>1 + DT к T>1,так что вектор hперпендикулярен изотермам (фиг. 2.7, б). Далее, DТ/Ds как раз равно быстроте изменения Т с изменением положения. А по­скольку изменения положения перпендикулярны изотермам, то наше AT/As — это максимальная скорость изменения. Она равна поэтому величине у Т. И, наконец, раз направления СТ и h противоположны, то (2.43) можно записать в виде вектор­ного уравнения