§ 8. Подвохи
Мы применили наши знания обычной векторной алгебры к алгебре оператора y Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о следующем выражении, куда входят две скалярные функции ш и j (фи):
Вы можете подумать, что это нуль, потому что оно похоже на
(Аa)X(Аb),
а это всегда равно нулю (векторное произведение двух одинаковых векторов АXА всегда нуль). Но в нашем примере два оператора С отнюдь не одинаковы! Первый действует на одну функцию, ш, а второй — на другую, j. И хотя мы изображаем их одним и тем же значком у, они все же должны рассматриваться как разные операторы. Направление Сш зависит от функции ш, а направление Сj — от функции j, так что они не обязаны быть параллельными:
(Сш)X(Сj)№0 (в общем случае).
К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что СjXСш =0 в любом скалярном поле: здесь обе Сдействуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хотим написать x-компоненту выражения С>2h, то сразу пишем
(2.60)
Ио это выражение не годится, если мы ищем радиальную компоненту С>2h. Она не равна С>2h>r. Дело в том, что в алгебре векторов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направление меняется от точки к точке. И начав дифференцировать компоненты, вы запросто можете попасть в беду. Даже в постоянном векторном поле радиальная компонента от точки к точке меняется.
Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С>2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.
* В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, jи k, то можно написать
* Мы рассматриваем