О Бесконечном (Гильберт) - страница 17

расширение, осуществляемое прибавлением идеалов, допустимо только при условии, что из-за этого в старой, узкой области никаких противоречий не возникает, т. е. при условии, что соотношения, которые получатся для старых образов после исключения идеальных, всегда в старой области имели место.

Однако эта проблема непротиворечивости при настоящем положении вещей вполне доступна для исследования. Именно, подставив в логическую формулу (А&!А) --> В, которая следует, как это уже было указано, из аксиом отрицания, вместо В неравенство 0 ≠ 0, мы получим:

(A&!А) --> 0 ≠ 0.

Таким образом, для доказательства непротиворечивости нам теперь необходимо только показать, что при доказательстве, проведённом по установленным правилам, «0 0» не появится в качестве заключительной формулы и, таким образом, что «0 0» не есть доказуемая формула. А это является задачей, которая принципиально лежит в области наглядного рассмотрения, аналогично тому, как, скажем, задача об иррациональности sqrt(2) (т. е. доказательство того, что невозможно найти таких два числовых знака а и b, которые связаны соотношением а>2 = 2b>2, где, следовательно, должно быть показано, что невозможно задать два числовых знака, обладающих некоторым вполне определённым свойством) находится в содержательно построенной теории чисел. Соответственно этому, нам надо доказать, что невозможно дать доказательство, обладающее некоторым вполне определённым свойством. Но ведь формализированное доказательство, точно так же, как и числовой знак, является конкретным и обозримым предметом; оно сообщаемо от начала до конца. Также и требуемое свойство заключительной формулы, состоящее в том, чтобы она гласила «0 0», является конкретно устанавливаемым свойством доказательства. Всё это можно действительно осуществить, и тем самым оправдывается введение наших идеальных высказываний.

Вместе с тем, мы решили ещё проблему, которая давно уже была весьма актуальна, а именно — проблему о непротиворечивости аксиом арифметики. Всюду, где применяется аксиоматический метод, возникает проблема — доказать непротиворечивость устанавливаемых аксиом. Ведь при выборе, трактовке и употреблении аксиом и правил мы не хотим зависеть только от доброй веры и слепого доверия. В геометрии и физических теориях доказательство непротиворечивости удаётся свести к вопросу о непротиворечивости аксиом арифметики. К самой арифметике этот метод, очевидно, не применим. Наша теория доказательства на основании метода идеальных элементов разрешает сделать этот последний важный шаг и тем самым завершает постройку учения об аксиоматике. И то, что мы дважды пережили, когда сначала речь шла о парадоксах исчисления бесконечно малых, а затем — о парадоксах теории множеств, — это впредь в царстве математики невозможно.