Евклид. Геометрия (Carrera) - страница 13

Фалесу и Пифагору различные авторы приписывают одни и те же достижения, а в случае с Гиппократом мы опираемся на свидетельство римлянина Симпликия, в свою очередь ссылающегося на «Историю геометрии» Евдема.


ГЛАВА 2

Структура «Начал»

Не меньшее значение, чем содержание, имеет структура «Начал»: Евклид отталкивается от краткого списка гипотез и переходит к дедуктивному доказательству многочисленных предложений. Такой подход сообщает этому произведению основательность, кажущуюся непогрешимой. Однако этот крепкий фундамент евклидового здания состоит в том числе и из кирпичиков общих представлений о математике, восходящих к философии Платона и Аристотеля.


«Начала» являются прямым наследием философии Платона и Аристотеля. По Платону, материальные объекты также являются идеальными, то есть существуют в мире идей. Аристотель возражал против этого, и можно утверждать, что текст Евклида написан под влиянием Аристотеля. И все же платоновская философия математики особо изучалась в Академии, о чем свидетельствует надпись над входом: «Да не войдет сюда не знающий геометрии».


Мы же ограничимся комментарием к аналогии разделенной линии, о которой Платон пишет в шестой книге «Государства» (см. схему на следующей странице). Существуют три воплощения предмета «кровать»: «кровать, созданная Богом», «кровать, сделанная плотником» и «кровать, нарисованная художником». «Бог, — говорит Платон, — желая быть истинным создателем истинно существующей кровати, [...] создал ее по природе своей единственной». Плотник же делает копии. А художник копирует плотника, но не «настоящую кровать».

В этом примере затрагивается вопрос существования, один из основных в платоновской философии, поскольку, по Платону, невозможно от эпистемологии (то есть знания или познания) перейти к онтологии (реальности, являющейся предметом познания). Он задается следующими вопросами: все ли кровати реальны, или же только некоторые, или ни одна? Что мы подразумеваем под «реальным», точнее, о какой реальности мы говорим, когда утверждаем, что научное знание состоит в «истинном познании реальности»? Если мы сузим вопрос до области математики, то как надо понимать математические объекты (вопрос эпистемологического характера) и что мы можем сказать об их существовании (проблема онтологического характера)?

По Платону, есть две реальности: реальность умопостигаемого мира идей, которую можно познать истинным знанием, и зримая реальность окружающего нас мира, о которой можно иметь лишь мнение. Приводя аналогию с разделенной линией, философ говорит об умопостигаемом, имея в виду, что мы можем понять только верхний уровень линии, неизменный уровень идей, нижний же отрезок относится к изменчивому миру, и о нем мы можем только составить мнение.