Значит, площадь треугольника с большим основанием больше. Следовательно, если
то
Теперь, применив определение Евдокса, мы получаем, что
АВ/ΓΔ = ΔАСВ/ΔΓΕΔ,
Ч.Т.Д.
В предыдущем примере мы установили равенство соотношений между парами величин различных видов: прямых в первом случае и площадей — во втором. Отсюда вытекает необходимость уточнения, которое содержится в определении 5 книги 5. Благодаря этим определениям Евклид располагал весьма полезным инструментом для получения конкретных геометрических результатов в области прямых и плоских многосторонних фигур. Эти результаты составляют основное содержание книги VI, в которой Евклид излагает в том числе предложения, указанные в следующей таблице. Это геометрическое ядро теории отношений.
Применение теории отношений в геометрии |
Предложение | Название | Содержание |
2 | Теорема Фалеса | Если в треугольнике параллельно одной из сторон проведена некоторая прямая, то она рассечет стороны треугольника пропорционально. |
19 | Теорема сторон | Подобные треугольники находятся друг к другу в двойном отношении соответственных сторон. |
5, 6 и 7 | Теоремы площадей | Критерий пропорциональности трех сторон; критерий пропорциональности двух сторон и критерий равенства одного угла. |
11 и 13 | Критерий подобия треугольников | Треугольники могут быть построены, исходя из двух данных прямых. |
12 | Третья и средняя пропорциональная (теорема высот прямоугольных треугольников) | Треугольник может быть построен, исходя из трех данных прямых. |
8 (вывод) | Четвертая пропорциональная | Если в прямоугольном треугольнике из прямого угла к основанию проведен перпендикуляр, то треугольники при перпендикуляре подобны и целому, и между собой. |
МЕТОД ИСЧЕРПЫВАНИЯ
У теории отношений открылся огромный — и неожиданный, что говорит о гениальности Евдокса,— математический потенциал для определения площадей и объемов. Для этого метод танграма должен был применяться до бесконечности, что невозможно из-за наложенного Аристотелем ограничения. Следовательно, необходимо прибегать к двойному методу доведения до абсурда — в XVII веке его назвали методом исчерпывания. Евклид использовал его для доказательства следующих предложений.
Книга XII, предложение 2. Круги относятся друг к другу как квадраты их диаметров.
S>1/S>2 - d>1>2/d>2>2
Книга XII, предложение 7. Всякая призма, имеющая треугольное основание, разделяется на три равные друг другу пирамиды, имеющие треугольные основания.
P>1/П>1 = 1/3
Книга XII, предложение 18. Сферы находятся друг к другу в тройном отношении собственных диаметров.
Е>1/Е>1 = d>1>3/d>2>3
АРХИМЕД И КВАДРАТУРА ПАРАБОЛЫ