= S>n + (2n- 1) х S>n = 2>n х S>n = 2>n х (2>n + 1 - 1). Ч. Т. Д.
Первые примеры
В «Арифметике» Никомах Герасский устанавливает, что совершенными числами являются 6,28,496 и 8126. Из этого он делает следующие выводы.
1. Совершенные числа (четные) оканчиваются на 6 и 8 (верно).
2.Они чередуются (неверно).
3.Существует одно совершенное число на каждый десятичный порядок — среди единиц, десятков, сотен, тысяч и так далее (неверно).
В XVIII веке Эйлер доказал теорему, взаимодополняющую теорему Евклида: каждое совершенное число (четное) имеет вид 2>n х (2>n+1-1), где 2>n+1-1 — простое число. На сегодняшний день все еще существуют нерешенные вопросы относительно совершенных чисел: неизвестно, бесконечен ли их ряд и существуют ли совершенные нечетные числа.
Начнем с последовательности нечетных чисел.
3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 |
37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | 65 | 67 | 69 |
71 | 73 | 75 | 77 | 79 | 81 | 83 | 85 | 87 | 89 | 91 | 93 | 95 | 97 | 99 | 101 | 103 |
Начиная с 3 уберем третьи числа через каждые два.
3 | 5 | 7 | | 11 | 13 | | 17 | 19 | | 23 | 25 | | 29 | 31 | | 35 |
37 | | 41 | 43 | | 47 | 49 | | 53 | 55 | | 59 | 61 | | 65 | 67 | |
71 | 73 | | 77 | 79 | | 83 | 85 | | 89 | 91 | | 95 | 97 | | 101 | 103 |
Начиная с 5 уберем пятые числа через каждые пять и получим следующее.
3 | 5 | 7 | | 11 | 13 | | 17 | 19 | | 23 | | | 29 | 31 | | |
37 | | 41 | 43 | | 47 | 49 | | 53 | | | 59 | 61 | | | 67 | |
71 | 73 | | 77 | 79 | | 83 | | | 89 | 91 | | | 97 | | 101 | 103 |
И так далее. Вот список простых чисел до тысячи.
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 |
127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 | 179 | 181 | 191 | 193 | 197 |
199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 |
383 | 389 | 397 | 401 | 409 | 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 |
467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 | 547 | 557 | 563 | 569 | 571 |
577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 |
769 | 773 | 787 | 797 | 809 | 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 |
877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 | 947 | 953 | 967 | 971 | 977 |
983 | 991 | 997 |
ПИФАГОРОВА ТРОЙКА
Последняя задача, которую стоит разобрать, — это алгоритм получения пифагоровых троек — трех натуральных чисел, подтверждающих теорему Пифагора, например 3, 4, 5; 5, 12, 13 и так далее, то есть таких чисел a, b и с, при которых а>2 + b>2 = с>2.
Возможно, в Древнем Вавилоне знали метод нахождения пифагоровых троек, о чем свидетельствует вавилонская глиняная табличка, которую называют Plimpton 322. В ней содержится несколько троек, выраженных в шестидесятых долях. Пифагору приписывается авторство метода, позволяющего получить эти числа, основанного на гномоне квадратных чисел. Квадратное число — это то, которое можно выразить в виде квадрата (см. рисунок). Следовательно, мы имеем n>² + (2n + 1) = (n+1)>². Для того чтобы составить пифагорову тройку, в которой катет и гипотенуза — два последовательных числа, гномон тоже должен быть квадратом, то есть 2n + 1 = k