Энциклопедический словарь юного математика (Савин) - страница 21

АНАЛИЗ МАТЕМАТИЧЕСКИЙ


В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.


Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.


«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье


Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.