Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.
Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.
Каковы же предпосылки появления математического анализа?
К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.
Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.
(1883-1950)
Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).