Энциклопедический словарь юного математика (Савин) - страница 6

Аксиомы есть не только в геометрии, но и в алгебре, и других математических науках. Например, равенства:

a + b = b + a,

a · b = b · a,

a + (b + c) = (a + b) + c,

a · (be) = (ab) · c,

a + 0 = a,

a · 1 = a,

a + (-a) = 0,

a · (1/a) = 1, при a≠0,

a · (b + c) = ab + ac,

выражающие свойства сложения и умножения, являются в алгебре аксиомами: они принимаются без доказательства и используются для вывода новых фактов (для доказательства теорем). Например, с помощью аксиом доказывают формулы квадрата суммы или разности, правила умножения многочленов, формулу суммы членов геометрической прогрессии и т.д.

В каждой математической науке аксиомы возникают в процессе ее долгого и сложного исторического развития. Первоначальные факты накапливаются в результате практической деятельности человека. Их проверяют, уточняют, систематизируют. Исключают из них те, которые могут быть выведены из других первоначальных фактов. Иногда обнаруживается, что оставшийся список простейших фактов (аксиом) – неполный, т.е. этих фактов недостаточно для вывода всех теорем, и тогда к этому списку добавляют недостающие аксиомы. В результате и получается полный набор аксиом (аксиоматика).

После Евклида математики многих поколений стремились улучшить, дополнить его аксиоматику геометрии. Большую роль сыграли работы современника Евклида, древнегреческого ученого Архимеда, который сформулировал аксиомы, относящиеся к измерению геометрических величин. Из ученых более позднего времени существенный вклад в усовершенствование аксиоматики геометрии внесли русский математик Н.И.Лобачевский, французский математик М. Паш, итальянский математик Д. Ж. Пеано. Логически безупречный список аксиом геометрии был указан на рубеже XIX и XX вв. немецким математиком Д. Гильбертом.


АКСИОМАТИКА И АКСИОМАТИЧЕСКИЙ МЕТОД


Аксиоматика - система аксиом той или иной математической науки. Например, аксиоматика элементарной геометрии содержит около двух десятков аксиом, аксиоматика числового поля – 9 аксиом. Наряду с ними важнейшую роль в современной математике играет аксиоматика группы, аксиоматика метрического и векторного пространств (см. Вектор) и др. Советским математикам С. Н. Бернштейну и А. Н. Колмогорову принадлежит заслуга аксиоматического описания теории вероятностей (см. Вероятностей теория). Десятки других направлений современной математики также развиваются на аксиоматической основе, т.е. на базе соответствующей системы аксиом (аксиоматики).


Аксиоматический метод – важный научный инструмент познания мира. Большинство направлений современной математики, теоретическая механика и ряд разделов современной физики строятся на основе аксиоматическою метода. В самой математике аксиоматический метод дает законченное, логически стройное построение научной теории. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, находит многократные приложения в математике и естествознании.