Энциклопедический словарь юного математика (Савин) - страница 7

Во многих разделах современной математики применяются метрические пространства как совокупности элементов произвольной природы, в которых для каждой пары a и b определено число ρ(a,b), называемое расстоянием между a и b и удовлетворяющее аксиоматике, состоящей всего из трех аксиом:

1) ρ(a,b) = ρ(b,a);

2) ρ(a,b)≥0, причем ρ(a,b) = 0 в том, и только в том случае, если a = b ;

3) ρ(a,b)≤ρ(a,c)+ρ(b,c).


«Аксиомы обладают наивысшей степенью общности и представляют начала всего». Аристотель


В приложениях математики рассматриваются метрические пространства, «точками» которых могут являться линии, фигуры, траектории полета космических кораблей, плановые задания заводов и т.д. Доказав (на основе аксиом) какую-либо теорему о метрических пространствах, можно утверждать, что она будет справедлива для метрических пространств, применяемых в геометрии, алгебре, астронавтике, экономике и, вообще, во всех тех областях, где появляются метрические пространства.

Развив ту или иную аксиоматическую теорию, мы можем, не проводя повторных рассуждений, утверждать, что ее выводы имеют место в каждом случае, когда справедливы рассматриваемые аксиомы. Таким образом, аксиоматический метод позволяет целые аксиоматически развитые теории применять в различных областях знаний. В этом состоит сила аксиоматического метода.

Современная точка зрения на аксиоматическое построение какой-либо области математики заключается в следующем: во-первых, перечисляются первоначальные (неопределяемые) понятия; во-вторых, указывается список аксиом, в которых устанавливаются некоторые связи и взаимоотношения между первоначальными понятиями; в-третьих, с помощью определений вводятся дальнейшие понятия и, в-четвертых, исходя из первоначальных фактов, содержащихся в аксиомах, выводятся, доказываются с помощью некоторой логической системы дальнейшие факты - теоремы. Первоначальные понятия и аксиомы заимствованы из опыта. Поэтому очевидно, что все последующие факты, выводимые в аксиоматической теории, хотя их получают на основе системы аксиом чисто умозрительным, дедуктивным путем, имеют тесную связь с жизнью и могут быть применены в практической деятельности человека.

Важнейшим требованием к системе аксиом является ее непротиворечивость, которую можно понимать так: сколько бы мы ни выводили теорем из этих аксиом, среди них не будет двух теорем, противоречащих друг другу. Противоречивая аксиоматика не может служить основой построения содержательной теории.

Чтобы объяснить подробнее, как в современной математике рассматриваются вопросы непротиворечивости, приведем пример. Несколько школьников решили организовать шахматный турнир по упрощенной схеме: каждый должен сыграть ровно три партии с кем-либо из остальных участников (а белыми или черными фигурами – по жребию). Составить расписание турнира никак не удавалось, и мальчики обратились за помощью к учителю. По просьбе учителя юные шахматисты подсчитали общее число участников: