равна
S/2, а их произведение равно
V>2, и применить неравенство о среднем арифметическом и среднем геометрическом, то будем иметь:
, т.е.
V>2/3 ≤ S/6 или V ≤ (S/6)>3/2.
Рис. 4
Как следует из теоремы о среднем, знак равенства достигается лишь в случае ab = bc = ac, т. е. при a = b = c, и при этом значение объема V принимает наибольшее возможное значение. Отсюда заключаем, что среди всех ящиков с заданной площадью полной поверхности наибольший объем имеет ящик кубической формы.
Назовем еще метод симметрии, эффективный при решении некоторых геометрических задач на экстремум. Суть его применения станет ясна, если мы рассмотрим такую простую задачу: на прямой a требуется найти такую точку M, чтобы сумма расстояний от нее до точек A и B, лежащих по одну сторону от прямой, имела наименьшее возможное значение (рис. 5).
Рис. 5
Пусть точка A' симметрична точке A относительно прямой a, а точка M - точка пересечения прямых A'B и a. Точка M и будет искомой. Действительно,
|AM| + |MB| = |A'M| + |MB| = |A'B|.
Для любой другой точки P прямой a справедливо неравенство:
|AP|+|PB|=|A'P|+|PB|>|A'B|
(последнее следует из того, что ломаная длиннее отрезка, соединяющего ее концы).
Решение этой задачи приписывают Герону Александрийскому, жившему в I в. Решал он, правда, физическую задачу: если в точке A находится источник света, а в точке B - глаз, то в какой точке M отразится от плоского зеркала выходящий из точки A световой луч, если известно, что угол падения равен углу отражения? (Последний факт был известен задолго до Герона Александрийского).
Как легко заметить, построенная выше точка M как раз такова, что угол между прямыми AM и a равен углу между прямыми MB и a, т.е. точка M и будет точкой отражения светового луча.
Из решения этой задачи Герон сделал такой вывод: отражаемый луч света выбирает кратчайший возможный путь между источником света и глазом. Заметим, что это один из первых примеров в истории науки, когда при описании физического явления использовался «принцип минимума», согласно которому природа всегда стремится избрать наиболее экономный способ.
ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ
Построения с помощью циркуля и линейки. Назначение циркуля и линейки известно всем школьникам: линейкой проводят прямые (точнее, отрезки), а циркулем – окружности, им откладывают и отрезки заданных длин (правда, для этого в наши дни чаще используют его разновидность – измеритель).
В школе изучают ряд простейших построений циркулем и линейкой (односторонней, без делений): построение прямой, проходящей через заданную точку и перпендикулярной или параллельной данной прямой, деление отрезка на несколько равных частей, деление пополам заданного угла.