Энциклопедический словарь юного математика (Савин) - страница 65

ТЕОРЕМА МОРЛИ

Одна из трех знаменитых задач древности задача о делении произвольного угла на три равные части. Лишь сравнительно недавно было доказано, что деление угла с помощью циркуля и линейки не всегда возможно. Видимо, этим объясняется то, что лишь в 1899 г. был открыт следующий удивительный факт: если в произвольном треугольнике разделить каждый угол на три равные части, то точки пересечения делящих их лучей (рис. 1) окажутся вершинами равностороннего треугольника. Эта теорема получила название теоремы Франка Морли, по имени американского математика, открывшего этот факт. Позже было замечено, что этим свойством обладают также и точки пересечения лучей, делящих на равные части внешние углы произвольного треугольника (рис. 2).

Рис. 1

Рис. 2


ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ


Геометрическое преобразование плоскости - взаимно-однозначное отображение этой плоскости на себя. Наиболее важными геометрическими преобразованиями являются движения, т.е. преобразования, сохраняющие расстояние. Иначе говоря, если f - движение плоскости, то для любых двух точек A,B этой плоскости расстояние между точками f(A) и f(B) равно |AB|.


Движения связаны с понятием равенства (конгруэнтности) фигур: две фигуры F и G плоскости а называются равными, если существует движение этой плоскости, переводящее первую фигуру во вторую. Фактически это определение использовал еще Евклид (см. Геометрия), называвший две фигуры равными, если одну из них можно наложить на другую так, чтобы они совпали всеми своими точками; под наложением здесь следует понимать перекладывание фигуры как твердого целого (без изменения расстояний), т.е. движение.

Примерами движений плоскости являются осевая и центральная симметрия, параллельный перенос, поворот. Как пример, напомним определение параллельного переноса. Пусть  - некоторый вектор плоскости α. Геометрическое преобразование, переводящее каждую точку A ∈ α в такую точку A' что  (рис. 1), называется параллельным переносом на вектор

. Параллельный перенос является движением: если точки A и B переходят в A' и B', т.е.
,
, то
, и потому |A'B'| = |AB|.

Рис. 1

При решении геометрических задач с помощью движений часто применяется свойство сохранения пересечения: при любом движении f пересечение фигур переходит в пересечение их образов, т.е. если P,Q - произвольные фигуры, то фигура P ∩ Q переходит в результате движения f в фигуру f(P) ∩ f(Q). (Аналогичное свойство справедливо для объединения.)

Задача 1. Окружность, центр которой принадлежит биссектрисе угла, пересекает его стороны в точках