Энциклопедический словарь юного математика (Савин) - страница 64

Эти три задачи привлекали внимание выдающихся математиков на протяжении столетий, и лишь в середине прошлого века была доказана их неразрешимость, т.е. невозможность указанных построений лишь с помощью циркуля и линейки. Эти результаты были получены средствами не геометрии, а алгебры, что еще раз подчеркнуло единство математики. Однако до сих пор еще встречаются люди, которые пытаются найти решения указанных задач при помощи циркуля и линейки.

Еще одной интереснейшей задачей на построение с помощью циркуля и линейки является задача построения правильного многоугольника с заданным числом сторон. Древние греки умели строить правильный треугольник, квадрат, правильный пятиугольник и пятнадцатиугольник, а также все многоугольники, которые получаются из них удвоением числа сторон, и только их.

Новый шаг в решении поставленной задачи был сделан лишь в 1801 г. немецким математиком К. Гауссом, который открыл способ построения правильного семнадцатиугольника при помощи циркуля и линейки и указал все значения n, при которых возможно построение правильного n-угольника указанными средствами. Этими многоугольниками оказались лишь многоугольники, у которых количество сторон является простым числом Ферма (т.е. простым числом вида

) (см. Ферма малая теорема) или произведением нескольких различных простых чисел Ферма, а также те, которые получаются из них путем удвоения числа сторон. Таким образом, с помощью циркуля и линейки оказалось невозможным построить правильный семиугольник, девяти-, одиннадцати-, тринадцатиугольник и т.д.

Другие геометрические построения. Однако в практических построениях нас никто не ограничивает в выборе математических инструментов, которых со времен древнегреческих математиков было создано великое множество. Чтобы выполнить большинство построений с нужной точностью, достаточно линейки с делениями и транспортира. Заметим, что точка, нанесенная карандашом на бумаге, отнюдь не является идеально математической точкой, а имеет определенные размеры, как и точка, полученная пересечением двух прямых, проведенных карандашом, особенно если угол между ними мал.

Довольно любопытны некоторые приближенные способы построения. Например, приближенная квадратура круга получается, если за сторону квадрата взять хорду, проходящую через конец одного из радиусов круга (OB) и середину перпендикулярного ему радиуса (OC) (рис. 4). Этому построению соответствует значение π ≈ 3,2.

Рис. 4

Теория построений при помощи циркуля и линейки получила широкое развитие в конце XIX в. Например, было показано, что любое построение, выполняемое с помощью циркуля и линейки, можно выполнить с помощью лишь одной линейки, если в плоскости построения задана некоторая окружность и указан ее центр.