), где
a — это расстояние от ноля вдоль горизонтальной оси, а
b — расстояние от ноля вверх. Вторая система, в которой используются «полярные» координаты, описывает точку с координатами (
a, b) как точку, которая находится под углом θ на расстоянии
r от начала координат. Это похоже на то, как в боевике командир подводной лодки объявляет, что вражеский корабль замечен в
r милях, азимут θ (разве что за исключением того, что мы измеряем углы в радианах, причем против часовой стрелки начиная с востока, а не по часовой стрелке с севера). На представленном ниже рисунке точка отображает комплексное число
a +
bi. Я отметил угол θ от горизонтали и расстояние
r от начала координат, что образует прямоугольный треугольник с углом θ, гипотенузой
r, прилежащей стороной
a и противолежащей стороной
b.
SOH-CAH-TOA!
Это мнемоническое правило для запоминания тригонометрических функций напоминает нам о том, что синус — это отношение противолежащей стороны к гипотенузе, а косинус — прилежащей стороны к гипотенузе. В данном случае это значит, что
Эти формулы можно записать так:
b = r sin θ; a = r cos θ
Следовательно, наше комплексное число может быть выражено через r и θ:
a + bi = r cos θ + (r sin θ) i
a + bi = r cos θ + ri sin θ
a + bi = r (cos θ + i sin θ)
Но постойте! Мы ведь знаем, что cos θ + i sin θ = e>iθ. Следовательно, мы можем заменить те члены уравнения, которые стоят в скобках, и получить такую формулу:
a + bi = re>iθ
Попытайтесь прочувствовать это уравнение. Комплексное число, которое находится на расстоянии r от начала координат, под углом θ радиан по отношению к горизонтальной оси, имеет форму re>iθ. Немного выше в этой главе я задал вопрос, что значит число е в мнимой степени, но тогда это казалось непонятным. Сейчас мы нашли на него ответ. Когда число е имеет мнимую степень, такой член представляет собой невероятно эффективное обозначение позиции на комплексной плоскости.
Теперь давайте рассмотрим точку на комплексной плоскости с координатами (–1, 0), которая представляет комплексное число –1 + 0i, или просто −1. Как показано на рисунке ниже, эта точка находится на расстоянии в 1 единицу от начала координат под углом в π радиан, а значит, мы можем записать ее как e>iπ.
Мы с вами заново открыли тождество Эйлера! Формула, описывающая позицию точки −1 на комплексной плоскости, выглядит следующим образом:
–1 = e>iπ
Это уравнение можно преобразовать в такую форму:
e>iπ + 1 = 0
Кроме того, поскольку точка i расположена на расстоянии в 1 единицу от начала координат под углом π/2 радиан к горизонтали, мы можем сделать вывод, что