— радиус окружности (см. рисунок ниже). В каждый момент времени скорость мяча перпендикулярна шнуру, а центростремительная сила воздействует на шнур, притягивая его к центру. В «Началах» Ньютон уделял особое внимание центростремительным силам, воздействующим на планеты. Однако в XVIII веке эта сила вызывала большую обеспокоенность у транспортных инженеров.
Теннисный мяч движется по кругу под действием центростремительной силы
На первых железнодорожных линиях использовались только прямые и круговые участки пути. Такое сочетание создавало определенные проблемы, поскольку, когда поезд переходил с прямого на круговой участок, пассажиры испытывали неприятные ощущения — их начинало резко клонить в сторону. На поезд, движущийся по прямому участку с постоянной скоростью, не воздействуют никакие силы. Но, когда он переходит на круговой участок, он подвергается действию центростремительной силы. Так как она направлена внутрь, это и вызывало у пассажиров ощущение, будто их выталкивает наружу. (На самом деле пассажиров наружу ничто не выталкивает. Они переходят с прямой траектории на круговую, а поскольку система ориентиров в вагоне остается прежней, возникает иллюзия, будто какая-то сила выталкивает их наружу.)
«После полувека железнодорожных перевозок мы все еще используем на путях только прямые линии и круги, — писал американский инженер Эллис Холбрук в 1880 году. — Создается впечатление, что железнодорожники принимают такое варварское сочетание как должное, даже не задавая вопросов по поводу того, что здесь не так»[150]. Холбрук нашел следующее решение: делать между прямым и круговым участками переходную кривую, на которой поезд, двигающийся с постоянной скоростью, находится под воздействием центростремительной силы, линейно увеличивающейся на протяжении определенного периода. Поскольку центростремительная сила рассчитывается по формуле
, где
m и
v — это константы, для того чтобы эта сила росла по линейному закону, переходная кривая должна иметь кривизну
.
Прежде чем вернуться к кривой Холбрука, давайте более внимательно рассмотрим концепцию
. Математики называют эту величину кривизной окружности с радиусом
r, которая представляет собой меру отклонения окружности от прямой линии. На рисунке ниже изображены две окружности: маленькая окружность с радиусом
r и большая с радиусом R; обе касаются пунктирной линии в одной точке. Кривизна малой окружности
больше кривизны большой окружности, поскольку она сильнее отклоняется от прямой. Для того чтобы понять концепцию кривизны окружности, можно представить ее себе как меру «стянутости»: чем меньше радиус окружности, тем сильнее она стянута, а значит, ее кривизна больше.