Красота в квадрате Как цифры отражают жизнь и жизнь отражает цифры (Беллос) - страница 175

Рождение: мертвая клетка, имеющая ровно три живые соседние клетки, становится живой.

Выживание: живая клетка, имеющая две или три живые соседние клетки, продолжает жить.

Смерть от одиночества: живая клетка, у которой нет по соседству живых клеток или есть только одна такая клетка, умирает.

Смерть от перенаселенности: живая клетка с четырьмя или более соседними клетками умирает.

Примечание. У каждой клетки есть восемь соседей; к их числу относятся четыре смежные клетки и четыре клетки, с которыми она соприкасается по диагоналям в углах. Перечисленные выше законы применяются по отношению ко всем клеткам одновременно, и каждый раз, когда это происходит, появляется новое поколение клеток.

Вот и все. Больше в игре «Жизнь» делать нечего.

Конвей сформулировал правила рождения, смерти и выживания таким образом, чтобы шаблоны не погибали и не эволюционировали слишком быстро, но чтобы их поведение было как можно интереснее. Представьте себе одну живую клетку. Она умирает от одиночества в следующем поколении. Точно так же шаблон, состоящий из двух соседних клеток, погибает после смены поколения. Однако, когда мы начнем рассматривать фигуры, состоящие из трех живых клеток, эти организмы окажутся достаточно жизнеспособными, чтобы выжить — во всяком случае, на какое-то время. На представленном ниже рисунке показано, что происходит с конфигурацией клеток в виде шеврона, состоящей из трех живых клеток. (Живые клетки черные, мертвые — белые.) У двух живых клеток в основании шеврона есть только по одной живой соседней клетке, а значит, они умрут, когда мы применим к ним перечисленные выше законы. У живой клетки на вершине есть две живые соседние клетки, поэтому она выживает, а у мертвой клетки посредине три живые клетки по соседству, поэтому она становится живой. То есть в следующем поколении шеврон превращается в столбец из двух живых клеток, а еще в одном погибает.

Как эволюционирует шеврон

Судьба еще четырех исходных конфигураций из трех клеток (триплетов) показана на рисунке ниже. (На этом рисунке каждое новое поколение отображается ниже предыдущего. В действительности каждое новое поколение занимает те же клетки.) Ко второму поколению два триплета погибают. Однако квадрат из четырех клеток, который Конвей назвал «блоком», продолжает жить, оставаясь в неизменном виде во всех последующих поколениях. Конфигурация из выстроившихся в линию трех клеток, расположенная то вертикально, то горизонтально, известна как «мигалка». Фигуры, которые не меняются (подобные блоку) или находятся то в одном, то в другом фиксированном состоянии, называются устойчивыми конфигурациями.