Центробежные насосы нефтепереработки (Ефанов) - страница 12

Обобщенной силой является сила, которая полностью определяет действующую систему сил.

Обобщенная координата и сила связаны формулировкой: в результате произведения приращения обобщенной координаты на обобщенную силу получается работа.

Движение вала с мешалкой описывается уравнениями в обобщенных координатах. Между обобщенными координатами и декартовыми координатами всегда существует зависимость в виде функции декартовых координат от обобщенных координат.

Из общего уравнения движения системы, полученного в декартовых координатах, получают уравнение движения в обобщенных координатах. В результате получается запись:





Для кинетическая энергия системы



находится производная по обобщенным координате и скорости и после преобразований:



Уравнение движения запишется в виде



Силы, действующие на вал, зависят только от положения и не зависят от времени, скорости. В этом случае, согласно теоремы Кастильяно, обобщенная сила равна производной потенциальной энергии (при этом совершаемая работа переводит потенциальную энергию в кинетическую):



По теореме Кастильяно [17,с.319] прогиб точки приложения сосредоточенной силы (P) равен частной производной потенциальной энергии деформации по этой силе, а производная потенциальной энергии деформации по обобщенной силе равна обобщенному перемещению:



В результате получается уравнение движения Лагранжа:



__

Равновесное положение системы вала принимается за начало обобщенных координат, т.е.



Кинетическая и потенциальная энергии системы:





-

коэффициенты инерции,



– коэффициенты жесткости.

Существует форма записи обобщенного закона Гука [5,с.314], связывающая все силы и перемещения:



В условиях равновесия:





С учетом этого, уравнение Лагранжа можно записать в виде системы линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:



Частными решениями уравнений системы будут уравнения:



В частных решениях (j = 0, 1,2,3…s):

Частным решениям соответсвуют резонансные частоты колебаний.

Для неизвестных

получают систему линейных однородных уравнений подстановкой полученного частного решения в приведенную систему уравнений (основные уравнения система малых колебаний с s степенями свободы):





Полученная система уравнений имеет решение, отличное от нуля в случае равенства нулю определителя этой системы.

На этом основании записывается вековое уравнение (уравнение частот). Вековое уравнение является уравнением s-степени относительно :





Искомые частота колебаний р и амплитуды μ, возникающие при этой частоте (k = 1,2,3…n), находятся из:

– основных уравнений системымалых колебаний с s степенями свободы,