Центробежные насосы нефтепереработки (Ефанов) - страница 21



Собственные частоты определяются из формулы:



Частоты изгибных и крутильных колебаний

:





Собственные частоты колебаний:



При a>3 = 0 центр тяжести и центр изгиба совпадают,



Как видно, формулы Тимошенко и по справочнику [19] для определения поперечных и изгибных колебаний почти полностью совпадают.

Однако, Тимошенко указывает о независимости от и необходимости применения метода Релея-Ритца.

Таким образом, для вала как для балки по приведенной выше теории должны быть рассчитаны поперечные колебания, например, для неразрезной балки на трех опорах.

Затем должны быть рассчитаны крутильные колебания. В случае наличия крутильных колебаний, их необходимо определить и проверку прочности выполнить для поперечных и крутильных колебаний.

Метод определения критической скорости по работе Тимошенко [19], где колебания связываются с эксцентриситетом необходимо считать некорректным. Колебания возникнут и при отсутствии эксцентриситета, однако, условия для статической балки и вращающегося вала с учетом эксцентриситета будут отличаться.

Тимошенко указывает о необходимости численного выполнения расчетов колебаний в работе [18]. То есть в том числе маститый специалист признает превосходство численных методов над ручными расчетами.

Расчет валов методом конечных элементов

В динамической задаче воздействие внешних сил является функцией времени. Напряженно-деформированное состояние зависит от времени. Время является дополнительным параметром, усложняющим расчет по сравнению со статическими расчетами.

Уравнения движения динамической системы выводятся с применением принципа Даламбера, на основе принципа возможных перемещений, на основе вариационного принципа Гамильтона.

Метода Даламбера удобно применять для систем с небольшим числом степеней свободы [21,с.486], к которым относятся валы с мешалками. Но вариационный подход Гамильтона является обобщением методов. Поэтому расчет вала с мешалками методом конечных элементов приведем на основе вариационного подхода Гамильтона.

Принцип Гамильтона записывается в форме [21]:



(Т и П – кинетическая и потенциальная энергии, W>ne – силы демпфирования).

Функционал Лагранжа [20]:





Функционал Лагранжа по принципу Гамильтона при возможных перемещениях удовлетворяет условиям совместности и граничным условиям на контуре в течении времени от t>1 до t>2 и имеет стационарное значение.

Начальное положение для вариационной формулировки МКЭ следует при Т = 0 и W>ne = 0:



Введем зависимости для Т, П и W>ne от обобщенных перемещений, скоростей и сил [20]:



После подстановки в интеграл и преобразований получим уравнение движения Лагранжа: