Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 10



Туземцы племени мундуруку, какими их увидел французский художник и фотограф Эркюль Флоранс в 1828 г.


Превосходство Евклида

Примерно к 323 г. до н. э. слава греческой науки распространилась по всем государствам, покоренным Александром Македонским. Неудивительно, что египетский царь Птолемей I, создав в Александрии крупный культурный центр, привлек туда афинских ученых. Евклид был назначен главой математической школы.

Первым из философов упоминает об Евклиде Прокл, согласно которому Евклид родился приблизительно в 300 г. до н. э. Относительно точности этой даты имеются сомнения, но достоверно известно, что именно Евклид систематизировал математику того времени, дополнил некоторые труды и привел неопровержимые доказательства утверждений, недостаточно подробно изложенных его предшественниками. Он обобщил и систематизировал геометрию своего времени. До Евклида математика представляла собой набор разрозненных вычислений. Благодаря его усилиям она превратилась в совокупность взаимосвязанных систем.



Греческий математик Евклид, изображенный фламандским художником Юстусом ван Гэнтом.


Известно, что Евклид написал 12 книг, из которых до нас дошли лишь пять: «Начала геометрии», «Данные», «О делении», «Явления» и «Оптика». «Начала» стали обязательными к изучению во всех университетах и научных центрах в течение следующих двух тысяч лет[2]. Считается, что существует около полутора тысяч изданий этой книги на греческом, арабском, латыни и других языках. До середины XX века эта книга была второй по числу проданных экземпляров, уступая лишь Библии.

«Начала» — один из древнейших, красивейших и подробнейших научных трудов среди всех, что дошли до наших дней. Они состоят из тринадцати книг: шесть посвящены планиметрии, три — арифметике, одна — измерениям, три — основам стереометрии. Целью Евклида было изложить основы известной на тот момент математики без какого-либо практического применения. Его труд оказался столь совершенным, что был превзойден лишь в конце XIX века[3]. В его теоремах все видели «истинные» подтверждения реальности, и никто не мог предположить, что возможна иная геометрия.

Чтобы попытаться понять, что побудило Евклида посвятить столько сил написанию столь подробного труда, вернемся к моменту, когда пифагорейцы обнаружили, что диагональ квадрата с единичной стороной равна √2. Это число не является рациональным, то есть его нельзя представить в виде частного целого и натурального чисел. Говоря языком той эпохи, диагональ квадрата была несоизмерима с его стороной. Этот факт сегодня кажется совершенно не удивительным, но некоторые греки, в частности пифагорейцы, считали его подлинным крахом всей математики, пошатнувшим устои космологии. Евклид, которому были известны работы пифагорейцев, стремясь найти выход из этого кризиса, решил сформулировать прочные основы всей геометрии, которые вкупе с непогрешимой логикой позволили бы получить серию непреходящих верных результатов.