Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 21



Треугольник, построенный на поверхности сферы. Сумма углов этого треугольника больше 180°.


ГЕОМЕТРИЯ ПРОСТРАНСТВА

Какая из трех геометрий «настоящая»? Какая из трех геометрий, о которых мы рассказали выше, лучше описывает реальный мир? Со временем стало понятно, что геометрия Евклида является полностью приемлемым приближением реальности, если речь идет об объектах, сопоставимых по масштабу с Землей, но на больших расстояниях все уже не столь очевидно. Если мы попробуем измерить расстояния на поверхности сферы и найти кратчайшие расстояния на ней, то поймем, что наш мир описывается эллиптической геометрией (геометрией Римана). При путешествиях со скоростями, близкими к скорости света, пространство-время будет описываться геометрией Минковского, которая является неевклидовой. Но что происходит во Вселенной вдали от поверхности Земли, если не брать в расчет время? Действительно ли мы живем во вселенной, пространство которой подчиняется законам геометрии Евклида?

Гаусс по просьбе короля Ганновера некоторое время занимался геодезическими исследованиями. В ходе исследований ему потребовалось измерить углы треугольника, образованного тремя горными вершинами, отстоящими друг от друга на расстояние около 50 миль. Отклонение полученной суммы углов от 180° было меньше допустимой ошибки измерений; таким образом, найденная сумма углов треугольника соответствовала всем трем гипотезам. В свою очередь, Лобачевский заметил, что треугольник, вершины которого расположены на Земле, будет слишком мал, чтобы заметить расхождения с евклидовой геометрией. Лобачевский занялся астрономическими исследованиями, но ему также не удалось прийти к какому-либо выводу, так как разница при измерении расстояний между Землей и Солнцем составила менее одной тысячной секунды. Тогда он обратился к треугольникам большего размера и занялся наблюдениями параллакса звезд. Однако ни ему, ни кому-то другому не удалось найти треугольник, где сумма углов отличалась бы от 180°, несмотря на то что в гиперболической геометрии эта разница возрастает с увеличением площади треугольника.

Согласно теории относительности, нашу Вселенную наилучшим образом описывает эллиптическая геометрия (геометрия Римана). Б. Льюис говорил: «В общей теории относительности Эйнштейна геометрия пространства — это риманова геометрия. Свет движется вдоль геодезических линий, а кривизна пространства зависит от природы материи, его составляющей».


Эрлангенская программа. Что же такое геометрия?

Для утверждения в должности профессора факультета философии и члена совета Эрлангенского университета Феликс Клейн (1849–1925) в 1872 г. написал доклад (правда, он так и не был зачитан публично), который можно считать одним из ключевых трудов по геометрии наряду с диссертацией Римана и «Началами» Евклида.