Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 28

Функции этого типа описал Барнсли, который доказал так называемую теорему коллажа. Позднее мы подробно расскажем о том, как создаются подобные функции, и узнаем, как благодаря теореме работает этот метод построения фигур.



Первая итерация изображения, на котором большая рыба съедает маленькую.



Третья итерация этого же изображения.



Финальная итерация.

>(Источник иллюстраций: Мария Изабель Бинимелис и Лаура Элизабет Виолант.)


По всей видимости, первые представления о рекурсивности и самоподобии появились в XVII веке благодаря разностороннему немецкому мыслителю Готфриду Вильгельму Лейбницу. Он упоминает схожие понятия как минимум дважды. Лейбниц так объяснил другу задачу об укладке фигур: «Представь себе круг, в который вписаны три равные окружности наибольшего радиуса. Последние могут содержать в себе три вписанных окружности каждая и так далее». Здесь также виден интерес Лейбница к задачам упаковки фигур, которые неизменно сохраняли популярность благодаря своему широкому применению.

Возможно, самой известной из подобных задач является гипотеза, предложенная Кеплером. Она гласит, что оптимальной укладкой пушечных ядер (такой, при которой они занимают минимально возможный объем) является пирамида, подобная тем, что выстраивают на прилавках торговцы фруктами. Эта на первый взгляд простая гипотеза была полностью доказана лишь в 2005 г. с помощью компьютера. Большая часть задач об упаковке берет начало в физике и биологии, применяется множеством способов в кристаллографии, при изучении структуры аморфных материалов и коллоидных растворов. Даже задача об оптимальной передаче цифровых сигналов может быть изложена как вариант задачи об упаковке сфер — так называемой задаче о контактном числе.

Во втором случае Лейбниц сказал, что капля воды содержит целую вселенную, которая, в свою очередь, также содержит более мелкие капли воды, каждая из которых вновь содержит в себе вселенную и так далее. Однако эта идея и многие другие, схожие с ней, со временем были отвергнуты, так как их нельзя было подтвердить экспериментально. Сегодня мы можем констатировать, что подобные рассуждения не столь нелепы, как может показаться. Было высказано множество идей о схожести модели атома Нильса Бора, где вокруг ядра по орбитам вращаются электроны, с законами вращения планет Кеплера. Здесь также прослеживается связь между микрокосмосом и макрокосмосом. Хотя нам известно, что эти модели совпадают не полностью, не стоит быть уверенным в том, что современные модели наилучшим образом отражают реальность. Возможно, что идеальной модели не существует, и мы будем вынуждены вечно довольствоваться лишь все более и более точными приближенными моделями.