Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 46



Это множество сложно изобразить, так как оно постепенно «исчезает», но нетрудно представить, как оно будет выглядеть, если мы продолжим процесс построения. Заметим, что если мы уменьшим канторово множество в три раза, то получим его левую часть. Если мы сделаем копию полученного множества и перенесем ее на 2/3 вправо, то получим правую часть канторова множества. Таким образом, канторово множество состоит из двух частей, каждая из которых в три раза меньше целого. По формуле размерности подобия получим:

D>s = log 2 / log 3 ~ 0,6309.

В канторовом множестве отсутствует какая-либо связь между точками, следовательно, его топологическая размерность равна нулю. Как можно видеть, его размерность подобия больше, чем топологическая размерность.

Для кривой Пеано, которая строится из девяти отрезков, n = 9, коэффициент уменьшения равен 1/3. Следовательно, ее размерность подобия равна

D>s = log3 >2/ log 3 = 2.

Двумерным аналогом канторова множества является так называемый ковер Серпинского. Его впервые описал польский математик Вацлав Серпинский в 1916 г. Первые четыре итерации построения ковра Серпинского выглядят так:



Можно сказать, что при построении ковра Серпинского на каждой итерации мы удаляем центральный квадрат полученной фигуры. Ковер Серпинского можно построить и другим способом: для этого нужно удалить центральный отрезок при построении кривой Пеано из девяти отрезков. Так как его можно получить из восьми копий оригинала, уменьшенных в три раза, то его размерность подобия будет равняться log 8/log 3–1,8928. Серпинский показал, что полученная кривая является универсальной, то есть содержит любую кривую, которую можно построить на плоскости. Если мы выполним аналогичное построение, взяв за основу пятиугольник или любой другой правильный многоугольник, то получим бесконечное множество «ковров». Наиболее известный из них, который строится на основе треугольника, — это так называемый треугольник Серпинского, изучением которого также занимался этот польский математик. Этот треугольник тоже можно получить итеративным построением на основе кривой; он имеет топологическую размерность 1 и размерность подобия, равную log 3 / log 2 ~ 1,5850.



Первые итерации построения треугольника Серпинского


Если мы перейдем к трем измерениям и обобщим построение канторова множества для куба, получим еще один удивительный объект — губку Менгера, названную в честь австрийского математика Карла Менгера, который открыл эту фигуру в 1926 г., когда занимался изучением топологической размерности. Это также универсальная кривая, но уже в трехмерном пространстве. Она имеет размерность подобия, равную log 20/log 3 ~ 2,7268, так как ее можно получить из 20 кубиков, каждый из которых в три раза меньше всей фигуры.