Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 59

с помощью данной системы функций.

Например, допустим, что дано изображение кленового листа и мы хотим описать его с помощью системы итерируемых функций. Так как в теореме коллажа не уточняется, какую систему нужно выбрать, лучше довериться интуиции и попытаться сформировать коллаж из различных копий исходного изображения листа. Чтобы упростить процесс, в нашем примере мы будем использовать только аффинные преобразования и ограничимся тремя функциями. На следующих изображениях показано преобразование каждой копии, выделенное прямоугольной рамкой. Представим, что преобразованные копии являются прозрачными, и расположим их поверх исходного изображения. На рисунке черным цветом выделены покрытые части исходного изображения. Части изображения, выделенные разными оттенками серого, по теореме коллажа указывают, насколько далек аттрактор системы итерируемых функций от искомого изображения.



Написание программ, которые способны решить эту задачу для произвольных изображений, и сегодня остается актуальной темой исследований и вызывает большой интерес ученых.

Глава 4

Скрытый порядок

Когда в 1980 году я сказал друзьям, что вместе с X. Хаббардом работаю над многочленами второй степени от комплексной переменной… меня спросили: «И ты надеешься найти что-то новоеР».

Адриен Дуади


Вы уже знаете, что такое размерность, самоподобие и непрерывность, и теперь мы готовы с головой окунуться в обширный мир фракталов и познакомиться поближе с самым знаменитым из них — множеством Мандельброта. Не стоит забывать, что на основе очень простых правил можно построить чрезвычайно сложные фигуры, как вы уже увидели из предыдущих глав этой книги. Этот принцип выполняется не только для фракталов, о которых мы уже рассказали и о которых поговорим и в этой главе. Ему также подчиняется великое множество явлений природы. Фрактальная геометрия предлагает аналогии и модели, которые, возможно, помогут нам в будущем найти некий универсальный закон Вселенной. Если этот закон существует, то в нем должна учитываться его извечная противоположность — хаос.


Действительно ли Мандельброт открыл множество Мандельброта?

Множество Мандельброта, также именуемое множеством М, обладает многими примечательными свойствами. Возможно, самое привлекательное и загадочное из них таково: это множество бесконечно сложно, но строится по очень простым правилам, понятным любому, кто умеет складывать и умножать. Однако стоит отметить, что при построении множества Мандельброта сложение и умножение придется выполнить несколько триллионов раз. Поэтому множество Мандельброта было открыто только с появлением современных компьютеров.