Как мы расскажем позднее, теоретические основы, благодаря которым открытие множества Мандельброта стало возможным, были сформированы в 20-е годы прошлого столетия усилиями французских математиков Гастона Жюлиа (1893–1978) и Пьера Фату (1878–1929). В 1918 г. Жюлиа опубликовал несколько статей о комплексных числах, где описал свойства определенных множеств, которые в то время нельзя было изобразить графически. Позднее эти множества получили название множеств Жюлиа.
В 1978 г. французский математик Адриен Дуади (1935–2006) и американец Джон Хамал Хаббард (р. 1945) с помощью специально созданной программы смогли получить первые изображения множеств Жюлиа — нечеткие и невысокого качества. Годом позже Мандельброт опубликовал собственные изображения, полученные в научно-исследовательском центре IBM. Первое изображение множества Мандельброта датируется 1981 г. Оно было получено совместными усилиями Роберта Брукса и Петера Мательски.
Дуади и Хаббард подробно изучили множество Мандельброта, доказав, что оно является связным и компактным и что его внутренняя часть состоит из счетного множества компонентов. Наконец, они же записали каноническую формулу множества Мандельброта — квадратичную комплексную функцию z>2 + с.
В свое время Мандельброт сказал, что крупнейшей проблемой для исследователей при изучении этого множества станет написание алгоритма его визуализации. В своей книге «Фрактальные объекты» он признает первенство работ Жюлиа и Фату, а также отмечает: «Я работал так, как ненавидят работать теоретики: я любовался незабываемыми картинами, используя компьютер как микроскоп, имея в своем распоряжении примитивные инструменты 1980 года».
КОМПЛЕКСНЫЕ ЧИСЛА НЕ ТАК СЛОЖНЫ, КАК МОЖЕТ ПОКАЗАТЬСЯ
Вещественные числа обозначают все точки, расположенные на числовой прямой, причем каждому числу соответствует точка и каждой точке соответствует число. Существуют правила сложения, вычитания, умножения и деления вещественных чисел. Так называемые комплексные числа определяются аналогичным образом стой лишь разницей, что им в соответствие ставятся точки, расположенные не на прямой, а на плоскости, которая называется комплексной плоскостью. Существует три способа определения комплексных чисел: в прямоугольной системе координат, в полярных координатах и в алгебраической форме. Комплексные числа обычно обозначаются буквой z. В прямоугольных координатах любому комплексному числу z сопоставлена точка с двумя координатами — вещественной и мнимой. Мнимые координаты откладываются на вертикальной оси, мнимая единица обозначается буквой