Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы (Вайнберг) - страница 99

Более того, в рамках того типа симметрий, которые определяют электрослабые силы, мы можем вращать эти стрелки по-разному для частиц в разных местах и в разные моменты времени. Это уже во многом похоже на симметрию, лежащую в основе общей теории относительности, которая позволяет поворачивать наши лаборатории не только на постоянный угол, но и на угол, увеличивающийся со временем, если, например, поместить лабораторию на карусель. Инвариантность законов природы по отношению к совокупности преобразований внутренних симметрий, которые зависят от местоположения и времени, называется локальной симметрией (поскольку результат преобразования симметрии зависит от положения в пространстве и времени) или калибровочной симметрией (по чисто историческим причинам)[105]. Именно локальная симметрия между разными системами отсчета в пространстве и времени приводит к необходимости существования тяготения. Во многом аналогичным образом другая локальная симметрия – между электронами и нейтрино (а также между u– и d-кварками и т.д.) – приводит к необходимости существования фотона и W– и Z-частиц.

Есть еще и другая точная локальная симметрия, связанная с внутренними свойствами кварков и получившая причудливое название «цвет»[106]. Мы видели, что существуют кварки разных типов, например кварки u и d, из которых сделаны протоны и нейтроны, входящие в состав всех обычных атомных ядер. Но кварки каждого из этих типов существуют в трех различных цветовых состояниях, которые физики (по крайней мере в США) часто называют красным, белым и синим. Конечно, все это не имеет никакого отношения к обычному цвету, а есть всего лишь способ отличить разновидности кварков данного типа. Насколько мы сейчас знаем, в природе существует точная симметрия между всеми цветами. Иными словами, сила, действующая между красным и белым кварками, равна силе, действующей между белым и синим кварками, а силы, действующие между двумя красными или двумя синими кварками, также равны друг другу. Но эта симметрия намного шире, чем просто симметрия по отношению к замене цветов кварков друг на друга. Согласно законам квантовой механики, можно рассматривать состояния отдельных кварков, которые не являются с определенностью красными, белыми или синими. Законы природы будут иметь точно ту же форму, если заменить красный, белый и синий кварки на кварки в трех подходящих смешанных состояниях (например, фиолетовый, розовый и бледно-лиловый). Опять же по аналогии с общей теорией относительности тот факт, что законы природы остаются прежними, даже если смешивание изменяется от точки к точке в пространстве и времени, приводит к необходимости включить в теорию семейство полей, аналогичных гравитационному полю и взаимодействующих с кварками. Таких полей восемь; их называют полями глюонов