Разгорелся скандал, в результате которого досье легло на письменный стол полковника Маниаса — бригадным генералом он станет позже. Полковник взял циркуль, воткнул острием в Дельфы и провел на карте окружность через Акрополь. Забавно то, что на линии окружности оказались Аргос и Олимпия. Эти места расположены на одинаковом расстоянии от Акрополя. Странный случай, — подумал полковник Маниас и переместил циркуль на критский Кнос. Тут на линию окружности попали Спарта и Эпидавр — смешно. Полковник продолжил свои исследования. Центр круга — Делос: на окружности также располагались Фивы и Измир. Центр круга — Фарос: на окружности находятся Кнос и Халкис. Центр круга — Спарта: на окружности в этот раз оказались Микены и Оракул Трофинионский.
Д-р Маниас продемонстрировал мне все это на картах, и я был поражен. Да разве может быть такое? И хотя у д-ра Маниаса карты были намного точнее тех, что можно купить в магазине, я решил проверить все эти удивительные совпадения еще и дома. Бригадный генерал заметил мое изумление и поинтересовался, знаю ли я, что такое золотое сечение. Я сокрушенно покачал отяжелевшей от мыслей головой, хотя смутно все-таки помнил, что о золотом сечении рассказывали на уроках геометрии. Д-р Маниас терпеливо принялся объяснять:
«Золотое сечение делит линию на два отрезка, и меньший отрезок пропорционально относится к большему так, как тот — ко всей линии».
И поскольку я не понял ни единого слова, то тайком открыл учебник геометрии моей дочери [92]. Там я вычитал:
«Если отрезок АВ делится точкой Е так, что большая его часть АЕ так относится к меньшей части ЕВ, как весь отрезок АВ относится к АЕ, то считается, что отрезок АВ поделен золотым сечением. Если поделенный золотым сечением отрезок удлинить на величину большего отрезка золотого сечения, то полученный новый отрезок снова делится золотым сечением конечной точкой первоначального отрезка. Этот процесс может продолжаться до бесконечности».
Мне стало жаль мою дочь. Что за тарабарщина! Я не силен в математике, и поэтому решил осуществить все написанное, экспериментируя с отрезками бумаги. Мой секретарь Килиан озабоченно поглядывал в мою сторону. Он начинал уже побаиваться за мой рассудок. После того как я в энный раз склеил большой отрезок и маленький, а потом вновь разорвал их, я внезапно понял суть золотого сечения. Уф! Советую читателям дойти до сути тем же методом. Д-р Маниас предоставил в мое распоряжение таблицы и продемонстрировал все данные по картам. И каждый, кто захочет проследить это, поначалу просто потеряет дар речи: