Итак, поскольку число пи олицетворяет собой, так сказать, границу между квадратом и кругом, между обычным сознанием и сознанием внешним, не указывает ли оно на то, что элохимы, кумары, дхьян-чоханы, татхагаты – то есть люди настолько возвысившиеся, что встреча с ними оказалась бы намного обширнее любых возникающих у нас, любых доступных нам, простым смертным, умозрительных представлений о Боге, – пребывают на границе между Трансцендентным Там и проявленным здесь, внизу? Я предлагаю вам подумать об этом.
Число пи возникает повсюду. Оно символизирует все то, что называют трансцендентными числами – и это очень своеобразные числа. Их строгое определение звучит достаточно непонятно. Тем, у кого нет математического образования, оно, скорее всего, покажется бессмыслицей, и потому мне придется перейти к наглядным примерам. Прежде всего, каждый знает, что такое целые числа. Все мы знакомы и с дробями, которые частично заполняют промежутки между целыми. Если вы изучали алгебру, то помните, что существуют и отрицательные числа: -1, -2 и так далее. Кроме того, есть числа иррациональные – такие, как V2. Они располагаются повсюду между целыми и дробями. Помните, что те точки на прямой, которые соответствуют числам, не имеют никаких размеров, то есть их поразительно много даже в крошечном отрезке. Вообще говоря, на любом отрезке их бесконечно много, их просто невозможно сосчитать.
Однако даже эти классы не покрывают всех существующих чисел. Есть числа, которые называют «мнимыми». Одним из них является число V-1, его обычно обозначают знаком i. Это число нельзя отнести к какому-либо из перечисленных классов, и потому для изображения чисел li, 2i, 3i, 4i, дробных и иррациональных i спользуется вертикальная ось (см. рис. 19). Наконец, существуют сочетания мнимых и действительных чисел. Пусть у нас есть число 2i, отмеченное на вертикальной оси, и обычное число 3, показанное на оси горизонтальной. Отметим точку А, которая будет соответствовать числу 3 +2i. Такие величины называются комплексными. С ними можно проводить любые действия, включая обратные операции, и в результате получатся другие числа на той же двумерной плоскости. Это значит, что вы можете не только складывать такие числа, но и вычитать одно из другого – ведь в нашем распоряжении есть отрицательные величины. Можно извлечь из любого комплексного числа корень и получить иррациональное комплексное число. Использование иррациональных чисел и переход к мнимым и комплексным величинам обеспечивают все возможные сочетания и позволяют извлечь корень из любого, даже отрицательного числа. Результатом любой операции на этой плоскости станет какая-либо точка той же плоскости, и это первый случай, когда такое требование выполняется. Это полное и замкнутое числовое поле.