Математика, Философия и Йога (Меррелл-Вольф) - страница 53

1 Мысль 1

2 Мысль 2

3 Мысль 3

n Мысль N

Во втором ряду столько же элементов, сколько их в первом. Кроме того, существует один элемент – то самое Я, – который не входит в последовательность мыслей. Таким образом, один ряд является однозначно соответствующей частью другого, то есть равен его полноте. Это значит, что человеческий разум потенциально бесконечен – не только в психологическом, но и в более глубоком смысле.

Сейчас мне хочется познакомить вас с математической индукцией – и не только для того, чтобы узнать новый математический факт. Это позволит нам лучше понять сам разум, так как индукция демонстрирует принцип выявления истины, чрезвычайно важный для всей математики и ее отношения к истине. Одновременно мы сравним этот принцип с законами обычной формальной логики. Пусть, например, этот круг включает в себя все смертные существа (см. рис. 20).


Рис. 20

Все люди смертны. Это равносильно утверждению о том, что люди (множество которых мы изобразим кругом меньшего диаметра) образуют некое подмножество класса смертных существ. Далее можно сказать, что Сократ (отдельный элемент, обозначенный символом «X») – человек. Поскольку он входит в меньший круг, можно прийти к выводу о том, что Сократ смертен. Таков схематический способ изображения этого силлогизма [18]. В данном случае мы воспользовались дедуктивной логикой: спустились из обширной области в более узкую методом исключения. Такая форма логики является не очень творческой, она больше пригодна для целей критического рассмотрения, анализа и так далее.

В индуктивной логике – в том привычном смысле, в каком она применяется в науке, – законы выводятся исходя из ряда наблюдений. Например, увидев набор точек на плоскости, вы можете попытаться придумать некую гипотезу, которая объяснит закономерность или взаимосвязь между положениями этих точек. В одной лекции я говорил о примере поиска подобной закономерности в расположении пяти точек. Если вы наложите на этот закон ограничение и потребуете, чтобы он представлял собой уравнение второй степени, то найдете единственное решение, поскольку пять точек на плоскости однозначно определяют кривую второй степени. Но если вы не будете сковывать свое мышление такими ограничениями (то есть допустите, что закон может быть уравнением третьей, четвертой, пятой и любой другой степени), то через эти пять точек может пройти в буквальном смысле слова бесконечное число кривых.

Иначе говоря, существует бессчетное, потенциально бесконечное число возможных объяснений наших научных наблюдений – потенциально неисчислимое разнообразие. Мы не можем добиться однозначной, определенной истины. Именно по этой причине аксиоматическая наука имеет только прагматическую ценность. Она некоторое время помогает, но рано или поздно становится неверной. После обобщения Ньютона люди считали, что наконец-то постигли истину. Эта точка зрения сохранялась очень долго, но и она была опровергнута. Теории Ньютона не удалось объяснить некоторые измерения после того, как люди смогли провести их точнее. Сегодня более адекватными считаются идеи Эйнштейна, но завтра и они могут смениться новыми представлениями. Таким образом, аксиоматическая наука предлагает не окончательную, а прагматическую истину.