Психодиагностика (Лучинин) - страница 98

>80, может составить 10 баллов, а различие в количестве правильных решений в интервале рангов Р>50>60 – лишь 1–3 балла.

Вместе с тем процентильные оценки обладают и рядом достоинств. Они легкодоступны пониманию пользователей психодиагностической информацией, универсальны по отношению к различным типам методик и легко рассчитываются.

Процентильные оценки не относятся к типичным шкальным показателям. Более широкое распространение в психодиагностике получили стандартные показатели, рассчитываемые на основе линейного и нелинейного преобразования первичных показателей, распределенных по нормальному или близкому к нормальному закону. При таком расчете проводится г-преобразование оценок (см. стандартизация, нормальное распределение). Чтобы определить 2-стандартный показатель, определяют разность между индивидуальным первичным результатом и средним значением для нормальной группы, а затем делят эту разность на а нормативной выборки. Полученная таким образом шкала z имеет среднюю точку М = 0, отрицательные значения обозначают результаты ниже среднего и убывают по мере удаления от нулевой точки; положительные значения обозначают, соответственно, результаты выше среднего. Единица измерения (масштаб) в шкале z равна 1а стандартного (единичного) нормального распределения.

Для преобразования полученного при стандартизации распределения первичных нормативных результатов в стандартную z-шкалу необходимо исследовать вопрос о характере эмпирического распределения и степени его согласованности с нормальным. Поскольку для большинства случаев значения показателей в распределении умещаются в пределах М ± 3σ, единицы измерения простой z-шкалы слишком велики. Для удобства оценивания применяется еще одно преобразование типа z = (x – ‹x›) / σ. Примером такой шкалы могут быть оценки тестовой батареи SAT(СЕЕВ) методики для оценки способности к обучению (см. тесты достижений). Эта r-шкала пересчитана таким образом, что средней точке соответствует значение 500, а σ = 100. Другим аналогичным примером является шкала Векслера для отдельных субтестов (см. шкала измерения интеллекта Векслера, где М = 10, σ = 3).

Наряду с определением места индивидуального результата в стандартном распределении групповых данных введение ШО направлено и на достижение другой важнейшей цели – обеспечение сопоставимости количественных результатов различных тестов, выраженных в стандартных шкалах, возможности их совместных интерпретаций, сведение оценок к единой системе.

В случае, если оба распределения оценок в сравниваемых методиках близки к нормальному, вопрос о сопоставимости оценок решается довольно просто (в любом нормальном распределении интервалам М ± nσ соответствует одинаковая частота случаев). Для обеспечения сопоставимости результатов, принадлежащих к рас-пределениям другой формы, применяются