Занимательная астрономия (Перельман) - страница 84

Не забудем, однако, что обозначение звездной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звездные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчет.

Если звездная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,5>27,8 раза.

Луна же ярче звезды первой величины

в 2,5>13,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты, выделяемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см>2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду.[41]

Распространенное убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:


т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчет: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звездного неба, т. е. всех звезд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звезды от первой до шестой величины включительно светят вместе так, как сотня звезд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звезд первой величины.

Это отношение равно

Итак, в ясную безлунную ночь мы получаем от звездного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700 х 447 000, т. е. в 1200 миллионов раз меньше, чем дает в безоблачный день Солнце.