Бег за бесконечностью (Потупа) - страница 36

Э. Шредингер полагал, что волновая функция описывает реальный волновой процесс в пространстве подобно тому, как формулы напряженности полей описывают электромагнитные волны. Если же концентрация дебройлевских волн в некоторой малой области пространства очень велика, то возникает «нечто», напоминающее частицу в обычном классическом понимании этого слова, своеобразный волновой сгусток, ведущий себя как частица.

Дискуссия по этому поводу затронула практически всех крупнейших физиков того времени, и большинство из них не согласилось с чисто волновой концепцией электрона, считая, что частицы так или иначе должны остаться частицами. Однако сохранять корпускулярные представления стало тоже далеко не простым делом, и решение проблемы было найдено на весьма оригинальном и неожиданном пути.

В 1927 году один из лидеров «квантовой революции», М. Борн, прославившийся рядом глубоких работ в различных разделах теоретической физики, рассматривал задачу о рассеянии электронов с помощью уравнения Шредингера. Получив формальное решение, он приступил к анализу едва ли не самого сложного вопроса: что же скрывается за красивыми математическими выражениями волновой теории? М. Борн старался взглянуть на постановку задачи и на конечный результат глазами экспериментатора. Независимо от того, что теоретики «измыслили» волновое уравнение и стараются ограничить себя только волновыми представлениями, рассуждал он, экспериментаторы всегда говорят о потоке частиц, о регистрации частиц… Может быть, это лишь вопрос удобства тех или иных слов? Может быть, люди, занятые постановкой опытов, просто не склонны к более глубокому постижению законов природы и абстрактному волновому подходу?

Нет, продолжал он, надежда на «близорукость» экспериментаторов ничем не оправдана, скорее наоборот, волновая теория не дает ясного ответа на вопрос, откуда берутся мельчайшие частицы вещества, занимающие чрезвычайно малый объем пространства. Ведь именно с ними приходится иметь дело в реальных опытах! А все слова о том, что вместо всамделишных частиц наблюдаются какие-то концентрированные волновые образования, пока не имеют под собой серьезных теоретических и экспериментальных оснований. Поэтому необходимо найти такую трактовку волновой функции, которая позволила бы, с одной стороны, сохранить естественное представление о частицах, а с другой объяснить своеобразные волновые закономерности в распределениях этих же частиц, получающихся, скажем, при исследовании рассеяния.

Исходя из таких соображений, М. Борн пришел к поразительному заключению. Оказалось, что все становится на свои места, если считать, что волновая функция характеризует вероятность того или иного состояния реальной частицы или совокупности частиц, а вовсе не какую-то реальность типа электромагнитной волны. Точнее говоря, квадрат модуля волновой функции описывает распределение вероятности определенного состояния частицы, например, ее положения в пространстве.