[34]5)/2, или 1,618034…
У этого числа много любопытных свойств: если от него отнять единицу, то получится обратное к нему — 0,618034…; возведение его в квадрат даст число, большее на единицу, — 2,618034… Кроме того, φ дают выражения sqrt(1+sqrt(1+sqrt(1+sqrt(1+…)))) и 1+1/(1+1/(1+1/1+…)).
Все это граничит с высшей математической красотой, но явно недостаточно для понимания успеха золотой пропорции. Посвященные ей сочинения — это вовсе не книги по математике, а скорее мистические и эзотерические писания, представляющие φ чудом сохранившейся частью великого Знания древних инициатов и показывающие на чертежах, как фасад Пантеона вписывается в «золотой треугольник» (со сторонами в отношении 1:1,618). Самое знаменитое среди них — сочинение «Золотая пропорция» (Le Nombre d'or, 1931), в котором странный румынский адвокат, инженер и дипломат Матила Гика заявляет, что он открыл «законы Числа, управляющие одновременно гармонией Вселенной и красоты». С чарующим лиризмом его проза смешивает искусство, математику и метафизику с целью доказать, что пропорция золотого сечения дает ключ к пониманию красоты и жизни (достаточно, например, посмотреть на раковину наутилуса, скрученную в логарифмическую спираль, и обнаружить в ней число φ).
Гика цитирует разнообразные источники — Пачоли, Евклида, Пифагора, — но в действительности он обходится исследованиями намного более поздними и исключительно немецкими: философа Адольфа Цейзинга, утверждавшего в 1870 году, что красота — это пропорция (разумеется, золотая), поскольку «прекрасное — это гармония, объединяющая единое с разнообразием»; физика Густава Фешнера, апостола экспериментальной эстетики, показавшего, что для подавляющего большинства людей прямоугольник со сторонами, находящимися в золотой пропорции, красивее любого другого прямоугольника; наконец, отца Дезидериуса Ленца, монаха-бенедиктинца, до безумия увлеченного геометрией и преподававшего религиозное искусство на основании, как нетрудно догадаться, представления о золотой пропорции. Между ними и Лукой Пачоли или древними греками — ничего. Ничего, кроме буйной фантазии самого Матилы Гика, заветной мечтой которого было, без сомнения, подвести под превосходство Запада, его мистики и эстетики, некий бесспорный фундамент. «Именно геометрия, — утверждал он, — дала белой расе техническое и политическое превосходство».
Берегитесь пропорций, особенно золотых! Такой лозунг никогда бы не пришел в голову математику, но именно он руководил кропотливыми исследованиями историка искусства Маргариты Неве, собравшей все детали истории, рассказанной здесь. Убежденная, что искусство — это прежде всего опровержение законов и теорий, будь им хоть 2000 лет, она постаралась проверить, действительно ли современные художники, и в особенности Синьяк, Сера, Серюзье и Мане, создавали свои картины, опираясь на золотое сечение. Разбирая тексты и письма, анализируя фотографии картин в ультрафиолетовых лучах и предварительные наброски, она пришла к заключению, стоящему дороже золота: все эти художники делили свои холсты на восемь частей — задача, посильная для восьмилетнего ребенка. Отношение 4/8 (половина) давало им идеальную симметрию; 6/8 (три четверти) почти не имело эстетической ценности; зато 5/8, отношение отнюдь не тривиальное, оказалось лежащим в основе многих композиций. Но 5/8 равно 0,625 и отличается от числа