). Что же произойдет, когда его масса превысит 1,4 солнечных, предел Чандрасекара, когда начнется гравитационный коллапс: он сколлапсирует и превратится из белого карлика в нейтронную звезду?
Некоторые ученые считают, что до возникновения нейтронной звезды дело здесь не доходит, поскольку прежде, чем это случится, происходит углеродный взрыв. Об этом известно пока что очень мало. Пусть белый карлик, являющийся центральным ядром красного гиганта, состоит в основном из углерода. Полагают, что еще до начала гравитационного коллапса углерод вступает в термоядерную реакцию и взрыв разносит звезду вдребезги — нейтронная звезда не образуется. У таких сверхновых в облаке останков мы не обнаруживаем нейтронной звезды: оттуда не исходят сигналы пульсаров. И действительно, пульсары не обнаружены ни на месте Сверхновой Тихо Браге, ни на месте Сверхновой Кеплера, хотя обе туманности моложе Крабовидной. Орбитальная Эйнштейновская обсерватория обнаружила в созвездии Кассиопеи останки Сверхновой, которая триста лет оставалась незамеченной, скрытая от земных наблюдателей облаком звездной пыли. По-видимому, здесь нейтронная звезда также отсутствует. Не произошло ли здесь полного разрушения звезды в результате углеродного взрыва?
Все ли менее массивные звезды заканчивают свое существование углеродным взрывом? Сегодня это никому точно не известно. Не исключено также, что после начала термоядерной реакции углерод горит относительно спокойно, без взрыва. Тогда белый карлик в центре красного гиганта набирает массу, и, как в нашем мысленном эксперименте, коллапсирует в нейтронную звезду. Высвобождающаяся энергия, как и при «железной катастрофе», излучается в пространство, преподнося нам величественное зрелище взрыва сверхновой. Возможно, именно это произошло в случае взрыва Сверхновой 1054 года, когда возникла Крабовидная туманность. История здесь могла быть такой.
Жила-была звезда с массой, равной пяти солнечным. В своих глубинах она сжигала водород, а когда ядерное горючее кончилось, звезда превратилась в красный гигант. В центре звезды началось горение гелия, а когда гелий выгорел, образовалось углеродное ядро. Центральная часть звезды стала представлять собой углеродное ядро, окруженное гелиевой оболочкой, и плотность вещества была здесь так же велика, как в белом карлике. На поверхности гелиевой оболочки продолжалось превращение водорода в гелий, а на границе между гелием и углеродом гелий превращался в углерод. Масса этого ядра, которое представляет собой по сути белый карлик, все время возрастала, и когда она в 1054 году достигла 1,4 солнечных масс, произошел гравитационный коллапс, который не смогло предотвратить и горение углерода. При этом высвободилось огромное количество энергии, которое разметало в пространство внешнюю оболочку звезды. Сегодня мы видим ее как Крабовидную туманность. Белый же карлик меньше чем за минуту превратился в нейтронную звезду, которая до наших дней посылает радиосигналы, принимаемые нами от пульсара в Крабовидной туманности.