Геометрия, динамика, вселенная (Розенталь) - страница 48

1 2 по которому двигалась пробная частица. Тогда можно показать, что число силовых линий статического калибровочного поля остается неизменным в пространстве (во времени оно неизменно вследствие условия статичности). Действительно, существуют две возможности изменения числа силовых линий: 1) их «обрыв» на границе некоторой пространственной области и 2) пересечение, «взаимодействие» силовых линий в некоторых точках x|, x|…. ≠ x|, x|. Обе возможности противоречат

3 4 1 2 следствию о независимости работы от пути, проходимого частицей. Действительно, рассмотрим первое допущение. Работа, производимая при переносе тела из точки x| до

1 границы области, зависит от точки границы x|, а работа,

k производимая при переносе тела из точки x| в точку x|, равна

k 2 нулю. Следовательно, суммарная работа зависит от пути, что противоречит основному постулату.

Если же силовые линии пересекаются, то силы, действующие на пробную частицу, зависят от конкретной формы пересечения силовых линий в некоторых точках x|…, x|.

1 k Это должно также привести к зависимости работы от пути. Следовательно, число силовых линий калибровочного поля (FI' — > FI+b) точечного источника в статическом случае взаимодействия в том смысле, который указан в разд.3 этой главы. Для такого случая выполняется закон F~1/r**2.

Вывод о неизменности числа силовых линий можно получить из калибровочной инвариантности и несколько иным путем. Поместим в начало отсчета две заряженные частицы, обладающие зарядами e| и e|, характеризующими их силовые поля.

1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r)+FI |(e|,e|,r). (42)

1 2 1 1 2 2 3 1 2

Произведем калибровочное преобразование, соответствующее каждому из зарядов:

FI'[(e|+e|), r] — > FI[(e|+e|), r] + b,

1 2 1 2

FI'(e|,r) — > FI |(e|,r) + b, (43)

1 1 1

FI'(e|,r) — > FI |(e|,r) + b.

2 2 2

Уравнения (42) и (43) совместны, если FI(e|,e|,r) = — b = const(r), что соответствует глобальному

1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r), (44)

1 2 1 1 2 2

который также отражает слабость взаимодействия.

Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.

Таким образом, электростатика, базирующаяся на законе Кулона, — следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.