p = — ε. (63)
Обычно в уравнениях состояния, связывающих давление p и плотность энергии вещества ε, обе величины имеют одинаковый знак. Отметим, что полная плотность энергии материи остается неизменной, если выполняется уравнение состояния (63).
Эти свойства вакуума (постоянная плотность и справедливость уравнения (63)) в рамках ОТО аналогичны описываемым взятом с соответствующим знаком LAMDA-членом в уравнении Эйнштейна.
Далее возникает вопрос, существуют ли частицы, которые четко реализуют основные свойства бозе-конденсата, и в частности уравнение состояния (63). Оказывается, что гипотетические частицы Хиггса, являющиеся неотъемлемым элементом объединенной теории электрослабого взаимодействия, хорошо моделируют описанные свойства бозе-конденсата.
Спин частиц Хиггса равен нулю, и именно они обеспечивают наличие массы у переносчиков слабого
+ 0 взаимодействия: W|-, Z|-бозонов. Частицы Хиггса пока не были обнаружены на ускорителях из-за их большой массы и (или) слабости взаимодействия с другими частицами. Отметим, что в отличие от частиц с отрицательной энергией нет никаких принципиальных трудностей в наблюдениях частиц Хиггса. Полагают, что их массы превышают 100 ГэВ и поэтому на современных ускорителях их нельзя воспроизвести. На рис. 7 (кривая 1) представлена типичная зависимость потенциала взаимодействия хиггсовских частиц V(FFI) от значения описывающего их поля. На этой кривой легко заметить два минимума: один соответствует значению поля FI=0, второй соответствует значению FI=FI |≠0. Важно отметить, что
0 V(0)>V(FI |). Следовательно, в принципе система из состояния
0 FI=0 может спонтанно «скатиться» в состояние FI=FI |,
0 обратный же процесс без внешнего воздействия невозможен. Значение FI=FI | соответствует абсолютно устойчивому
0 состоянию вакуума скалярных частиц Хиггса.
≡=РИС. 7
Д.А.Киржниц и А.Д.Линде показали, что зависимость V(FI) существенно зависит от температуры конденсата T|. При Т>T|
c c минимум при FI=FI | исчезает (кривая 2) и остается один
0 минимум — при FI=0. Кривая V(FI) становится симметричной относительно прямой FI=0, перпендикулярной оси абсцисс. На кривой 1, соответствующей T — > 0, такая симметрия отсутствует. По современным воззрениям, возникновение асимметрии скалярного вакуума приводит к появление массы у частиц.
Любопытная ситуация возникает при изменении (например, уменьшении) температуры T. При высоких температурах реализуется симметричная зависимость 2; по мере уменьшения температуры при некотором критическом значении T=T|
c появляется второй минимум, соответствующий кривой 1. Симметрия системы (вакуума) изменилась, т. е. в ней произошел фазовый переход.