Таким образом, в астрономии, музыке, геометрии и арифметике пифагорейцы увидели общие числовые пропорции, гармонические соотношения, познание которых, согласно им, и есть познание сущности и устройства мироздания. Из отрывков, которые древние свидетельства приписывают Филолаю, мы видим, что пифагорейцы уже в V в. до н.э. размышляли над вопросом о возможности познания и сформулировали положение, впоследствии ставшее кардинальным для математического естествознания, а именно: точное знание возможно лишь на основе математики. Вот слова, приписываемые Филолаю (Стобей Ecl. I prooem. cor. 3): "Ибо природа числа есть то, что дает познание, направляет и научает каждого относительно всего, что для него сомнительно и неизвестно. В самом деле, если бы не было числа и его сущности, то ни для кого не было бы ничего ясного ни в вещах самих по себе, ни в их отношениях друг к другу"51. В этом фрагменте сформулирован тот принцип познания, который лег в основу первой математической "программы". То, в чем не обнаруживается "природа числа", не может быть предметом познания. То, что не содержит в себе числа, является, по Филолаю, беспредельным, а беспредельное непознаваемо.
Эти пифагорейские представления о математическом фундаменте научного знания получили в IV в. до н.э. теоретическое обоснование и весьма четкое выражение в сочинениях Платона. У Платона же мы находим изложение пифагорейского учения о числовых пропорциях геометрических величин, а также систематизацию различных областей математического знания, соединение их в единую систему наук. Развитие пифагорейской научной мысли в IV в. до н.э. оказывается тесно связанным именно с Платоном и его школой. Крупнейший математик-пифагореец Архит из Тарента был другом Платона, ученик Архита Евдокс Книдский был связан с Академией и, по преданию, одно время учился у Платона.
Поэтому рассмотрение пифагорейской математики IV в. до н.э., так же как и более детальный анализ учения о гармонии, мы будем вести, опираясь, помимо других источников, на тексты Платона. Платон в своих диалогах часто дает разъяснение математических понятий - может быть, наиболее близкое духу пифагореизма.
Однако предварительно необходимо ввести в рассмотрение еще ряд аспектов математического мышления пифагорейцев, чтобы выяснить направление дальнейшей эволюции понятия науки в античности.
Числа и вещи
От Аристотеля мы получаем свидетельство о том, что пифагорейцы не проводили принципиального различия между числами и вещами. "Во всяком случае, говорит Аристотель, - у них, по-видимому, число принимается за начало и в качестве материи для вещей, и в качестве <выражения для> их состояний и свойств..."52. Сами числа они еще не полностью отделяют от чувственных вещей и поэтому еще близки к натурфилософам в своем отношении к чувственному бытию53.