История греческой философии в её связи с наукой (Гайденко) - страница 42

В этом вопросе мы полностью присоединяемся к выводу В.П. Зубова, который пишет в этой связи: "У нас нет достаточных данных утверждать существование у Демокрита представления, будто наряду с физически неделимыми атомами (или, так сказать, внутри них) существуют в качестве их компонентов еще более мелкие неделимые части, или "амеры""20. В том же смысле, что и В.П. Зубов, высказался по этому вопросу также немецкий ученый Ю. Мау21.

Специально рассмотрел этот вопрос Д. Ферли в своей книге "Два исследования о греческих атомистах" (1967). Первое исследование - "Неделимые величины" как раз посвящено проблеме делимости и непрерывности, и здесь автор приходит совсем к другому выводу, чем С.Я. Лурье. В своей работе Ферли различает делимость физическую и теоретическую: "Мы должны различать два рода деления, - пишет он. - Я называю первый род физическим делением: это деление, при котором прежде соприкасавшиеся (contiguous) части отделяются друг от друга пространственным интервалом. Этому противоположно теоретическое деление: объект является теоретически делимым, если части могут быть разделены в нем умом, даже если эти части не могут быть отделены от других пространственным интервалом"22. Как видим, физическую делимость Ферли отождествляет с возможностью практически разделить тело на части; теоретическая же делимость означает, что тело может быть мысленно разделено на части, даже если его и невозможно разделить физически. Однако и при физической делимости (неделимости), и при делимости теоретической речь идет, согласно Ферли, о возможности или невозможности разделить физическое тело. Именно такого рода теоретическую (а не только физическую) неделимость физических тел - атомов, по мнению Ферли, отстаивали Левкипп и Демокрит. Но отсюда еще не следует, подчеркивает он, что Демокрит утверждал также и математический атомизм, т.е. неделимость уже не тел, а пространственных величин. "Математическим атомистом будет тот, кто полностью отрицает бесконечную делимость для всех протяженных величин, т.е. кто утверждает принцип конечной делимости в геометрии. И я не уверен, что Демокрит был математическим атомистом в этом смысле"23, - говорит Ферли во введении к своей работе. Подробно проанализировав античные свидетельства об атомизме Демокрита, Ферли в заключение констатирует: "Рассмотрение свидетельств подтверждает тот взгляд, что Левкипп и Демокрит были более чем физическими атомистами. Они считали, что их атомы являются неделимыми теоретически, так же как и физически. Но, как я уже отмечал, нет свидетельств о том, что они рассматривали также и пространство как составленное из неделимых минимумов. Я думаю, что последнее было нововведением Эпикура"24.