Из формулы (9) следует:
и при малом i, sin(i) = i, а i2 = 0, т.е.
что от формулы (10) имеет заметное отличие. Он и здесь допустил ошибку.
Обратим внимание на рис. 2. Если i - мал, то пластинка имеет у К.Э. Циолковского только одну скорость Vp, т.е. движется не нормально, а параллельно потоку. Поэтому и сила сопротивления должна равняться нулю, а останется только сила трения, которую он в свои рассуждения не вводил.
Все исследователи того времени изучали этот вопрос, наоборот, при заметных углах i. При больших i формула И. Ньютона к заметной погрешности не приводила.
Таким образом, и этот аспект его работы ошибочен. Он не только не опроверг или не уточнил формулу И. Ньютона, но и попросту продемонстрировал свое непонимание существа дела.
Самое любопытное в этой работе состояло в том, что его эксперименты совершенно были неадекватны рассмотренной теоретической модели. Поэтому целесообразно продлить наше "свидание" с этой работой и рассмотреть методику его опытов.
Остановимся сначала на его экспериментальной установке (см. рис. 3).
На некоторой подставке была установлена горизонтальная ось. Перпендикулярно к ней крепились две проволоки, на концы которых можно было надевать прямоугольные пластинки из плотной бумаги. Ось и эти пластинки могли некоторое время вращаться посредством намотанной на ось нитки, разматываемой тяжестью груза. Сущность эксперимента сводилась к следующему. Прежде всего, приводились с помощью груза во вращения эти пластинки, а во время этого вращения Циолковский это устройство начинал двигать параллельно его оси. Вращение при этом пластинок замедлялось, а при некоторых грузах и вообще останавливалось [101, с. 25-26]. Вот эти два эффекта он и изучал в этой своей работе, и подгонял подбором К результаты опытов к его формулам. Однако методика экспериментов не имела ничего общего с его теоретической моделью. В самом деле, в этих своих опытах он изучал фактически эффект вертушки, скорость вращения которой зависит от того, как расположена пластинка (пластинки). Если длинной стороной перпендикулярно оси вращения, то скорость вращения будет меньше, чем в случае, когда пластинка будет расположена этой стороной параллельно этой оси.
Произведем некоторые простые расчеты. Как известно, линейная скорость движения точки пластинки при ее вращении равна V = ωR, где ω - угловая скорость вращения, a R - кратчайшее расстояние от оси вращения до рассматриваемой точки.
Тогда среднеарифметическая скорость по длине пластинки составит:
где: а - длинная сторона пластинки, расположенной перпендикулярно ею к оси вращения.