Таким образом, можно уверенно констатировать, что К.Э. Циолковский не нашел способа охлаждения двигателя его ракеты. А ведь это вопрос принципиальный, поскольку в его камере должны были сгорать самые калорийные топлива. Можно, конечно, предложить разместить Солнце в камере и считать состоявшимся изобретение космической ракеты. Однако любой специалист по патентной экспертизе, несомненно, задаст изобретателю вопрос о том, а как же предохранить эту камеру от сгорания, причем этот вопрос симметричен самому предложению и без его решения оно теряет всякий смысл.
Впрочем, К.Э. Циолковский в связи с проблемой охлаждения прямо писал: "... не я решу эти вопросы..." [110, с. 79].
Вот, собственно, и все конструктивные идеи, изложенные в цитируемой статье [110]. Их суть состоит, в основном, в переносе известных в науке и технике технических решений на предлагаемую космическую ракету. Исключение составляет, видимо, идея газового руля в ракете, четко и осмысленно сформулированная К.Э. Циолковским. Далее Циолковский переходит к вопросам ракетодинамики, на которых мы остановимся весьма подробно, поскольку в литературе его вклад в эту область науки чрезвычайно деформирован и, конечно, в сторону завышения его успехов.
Формула И.В. Мещерского с именем К.Э. Циолковского
Итак, претендуя на изобретение межпланетной космической ракеты, К.Э. Циолковский должен был математически доказать ее способность преодолеть притяжение Земли, совершить космический полет и вернуться обратно.
В противном случае его идея была бы просто гипотезой, для превращения которой в изобретение предстоял еще долгий путь.
В настоящем разделе мы попытаемся понять в какой степени ему удалось решить эту задачу, каков был уровень его работ по ракетодинамике и какие ему принадлежат здесь приоритеты.
Сначала, конечно, остановимся на первой задаче ракетодинамики, носящей имя К.Э. Циолковского, так же как и полученная конечная формула и входящее в нее одно число.
Предполагая, что ракета летит в свободном пространстве, т.е. она не испытывает ни силы гравитации, ни сопротивления атмосферы и что скорость истечения продуктов сгорания относительно ракеты постоянна (это было его молчаливое предположение), он составляет следующее уравнение, исходя из закона сохранения количества движения:
dV (M>1 + M) =V>1dM ; (1)
где М - запас топлива на ракете в данный момент полета;
M>1 - сухая масса ракеты;
V>1 - скорость истечения продуктов сгорания;
V - скорость ракеты.
Разделив переменные и интегрируя, он получил:
или V / V>1 = - ln (M>1 + М) + С где: C = const