Апология математики, или О математике как части духовной культуры (Успенский) - страница 3

Применение математики в физике не ограничивается числовыми формулами и уравнениями. Её, математики, абстрактные конструкции позволяют лучше понять природу тех физических явлений, изучение которых находится на передовом крае науки. Поясним сказанное с помощью исторической аналогии. Когда-то считали, что Земля плоская. Ничего другого в то время просто не могло прийти в голову. Затем пришли к мысли о её шарообразности. Вряд ли сама эта мысль была бы возможна, не обладай человеческое сознание уже готовым представлением о шаре. Точно так же долгое время считалось очевидным, что окружающее нас физическое пространство есть самое обычное трёхмерное евклидово пространство из школьного курса геометрии. В этом были уверены все, включая тех, кто не знал учёной терминологии и потому не пользовался термином “евклидово пространство” (вспомним мольеровского Журдена, не знавшего, что говорит прозой). И действительно, а как же может быть иначе? Первые сомнения возникли в XIX веке независимо в Германии у Гаусса и в России у Лобачевского. Они первыми осознали не только существование неевклидовой геометрии как математического объекта, но и возможность неевклидового строения нашего мира (мы коснёмся этой темы в главе 8). Лобачевского тогда никто не понял, кроме Гаусса, сам же Гаусс, предчувствуя непонимание, ни с кем не делился своим прозрением. Теория относительности подтвердила указанную неевклидовость, предсказав прогибание пространства под воздействием массивных тел, что, в свою очередь, было подтверждено наблюдаемым искривлением луча света вблизи таких тел. Некоторые свойства пространства и времени оказались парадоксальными, другие остаются неизвестными. Вместе с тем познание этих свойств может оказаться жизненно важным для человечества. Математика предлагает уже готовые модели, позволяющие лучше понять эти свойства, в особенности же свойства парадоксальные, противоречащие повседневному опыту. Более точно, в математике построены такие структуры, которые обладают требуемыми свойствами.

Здесь мы прикоснулись к важной философской, а именно гносеологической, теме. Только что упомянутое представление о шаре, столь необходимое для осознания фигуры Земли, находило поддержку в повседневном опыте - а именно в наблюдении шарообразных предметов, как природных (яблок, тыкв, ягод, катимых скарабеями навозных шариков и т. п.), так и искусственных (например, пушечных ядер). И когда потребовалось узнать фигуру Земли, оставалось лишь воспользоваться названным представлением. Иначе обстоит дело с попытками познания строения Вселенной. Повседневный опыт не даёт требуемых геометрических форм. Оказалось, однако, что хотя такими формами и не обладают предметы, доступные непосредственному созерцанию, эти формы представлены в уже обнаруженных структурах математики. Поскольку эти математические структуры точно описаны, нетрудно, при желании, понять, как в них реализуются свойства мироздания - даже те, которые кажутся парадоксальными. А тогда остаётся допустить, что геометрия реального мира хотя бы отчасти выглядит так, как геометрия этих структур. Таким образом, математика, не давая ответ на вопрос, как оно есть в реальном мире, помогает понять, как оно может быть - что не менее важно: ведь как оно есть мы вряд ли когда-нибудь узнаем до конца. (В главе 9 мы вернёмся к этой теме.) И эту помощь, которую оказывает математика в познании мира, также следует вписать в перечень её приложений.