Полезное ископаемое переходит в пену на поверхность. Пустая порода остается на дне. Пену снимают и направляют в дальнейшую обработку для получения так называемого "концентрата", который содержит в десятки раз меньшую долю пустой породы.
Силы сцепления поверхностей способны нарушить уравнивание жидкости в сообщающихся сосудах. Справедливость этого очень легко проверить.
Если тоненькую (доля миллиметра в, диаметре) стеклянную трубочку опустить в воду, то в нарушение закона сообщающихся сосудов вода в ней быстро начнет подниматься вверх, и уровень ее установится существенно выше, чем в широком сосуде (рис. 2.4).
Рис. 2.4
Что же произошло? Какие силы удерживают вес поднявшегося столба жидкости? Подъем произведен силами сцепления воды со стеклом.
Силы поверхностного сцепления отчетливо проявляются лишь тогда, когда жидкость поднимается в достаточно тонких трубках. Чем уже трубочка, тем выше поднимается жидкость, тем отчетливее явление. Название этих поверхностных явлений связано с названием трубочек. Канал в такой трубке имеет диаметр, измеряющийся долями миллиметра; такую трубку называют капиллярной (что значит в переводе: "тонкой, как волос"). Явление подъема жидкости в тонких трубках называется капиллярностью.
На какую же высоту способны поднять жидкость капиллярные трубки? Оказывается, в трубке диаметром 1 мм вода поднимается на высоту 1,5 мм. При диаметре 0,01 мм высота подъема возрастает во столько же раз, во сколько уменьшился диаметр трубки, т. е. до 15 см.
Разумеется, подъем жидкости возможен лишь при условии смачивания. Нетрудно догадаться, что ртуть не будет подниматься в стеклянных трубках. Наоборот, ртуть в стеклянных трубках опускается. Ртуть так не "терпит" соприкосновения со стеклом, что стремится сократить общую поверхность до того минимума, который разрешает сила тяжести.
Существует множество тел, которые представляют собой нечто вроде системы тончайших трубок. В таких телах всегда наблюдаются капиллярные явления.
Целая система длинных каналов и пор имеется у растений и деревьев. Диаметры этих каналов меньше сотых долей миллиметра. Благодаря этому капиллярные силы поднимают почвенную влагу на значительную высоту и разносят воду по телу растения.
Очень удобная вещь - промокательная бумага. Вы сделали кляксу, а надо перевернуть страницу. Не ждать ведь, пока клякса высохнет! Берется листик промокательной бумаги, конец его погружается в каплю, и чернила быстро бегут кверху против силы тяжести.
Происходит типичное капиллярное явление. Если рассмотреть промокательную бумагу в микроскоп, то можно увидеть ее структуру. Такая бумага состоит из неплотной сетки бумажных волокон, образующих друг с другом тонкие и длинные каналы. Эти каналы и играют роль капиллярных трубочек.