простые числа — так же, как видели они 111 или три по 37? В любом случае, вычислять простые числа они никак не могли — они не были способны ни к каким вычислениям.
На следующий день я вернулся в больницу, прихватив с собой драгоценную таблицу. Близнецы снова были погружены в свое числовое общение, но на этот раз я тихо к ним подошел. Сначала они слегка растерялись, но, убедившись, что мешать им я не собирался, возобновили прежнюю «игру» с шестизначными числами. Через несколько минут, решив поучаствовать, я рискнул назвать восьмизначное число. Близнецы повернулись ко мне и замерли с видом глубокой сосредоточенности и некоторого сомнения. Пауза — самая длинная из всех, которые я у них наблюдал, — продолжалась с полминуты или больше. Вдруг оба одновременно заулыбались. Осуществив головокружительный процесс внутренней проверки, они увидели, что мое восьмизначное число было простым. Это привело их в восторг, в двойной восторг: во–первых, я подарил им новую игрушку, простое число такого порядка, какого они раньше не встречали, а во–вторых, я понял и оценил их игру и принял в ней участие.
Они слегка подвинулись, освобождая место, и я уселся между ними — новый партнер, третий в их числовом мире. Джон, лидер в этой паре, надолго задумался. Это продолжалось минут пять. Я сидел, едва дыша, боясь пошевелиться. Наконец Джон назвал девятизначное число. Майкл, подумав, ответил другим таким же. Наступила моя очередь, и я, тайком заглянув в таблицу, внес свой нечестный вклад — десятизначное число.
Опять последовала тишина, еще более длительная и сосредоточенная, чем раньше, и Джон, после какого‑то невероятного внутреннего созерцания, назвал двенадцатизначное число. Я не мог ни проверить его, ни назвать свое в ответ, поскольку моя таблица (насколько мне было известно, единственная в своем роде) дальше десяти знаков не шла. Но то, переднем спасовала таблица, Майклу оказалось вполне по плечу, хотя и заняло у него еще пять минут. Через час близнецы уже вовсю обменивались двадцатизначными числами. Предполагаю, что они тоже были простыми, но проверить этого я не мог. Тогда, в 1966 году, такую проверку могли осуществить только самые мощные компьютеры, и то это было непросто, даже с помощью решета Эратосфена[127] или любого другого алгоритма. Прямого способа вычисления простых чисел такого порядка вообще не существует — и тем не менее близнецы это делали[128].
Я снова подумал о Дэйзе, о котором читал много лет назад в великолепной книге Ф. Майерса «Человеческая личность» (1903). Майерс пишет: