Вокруг Света 2008 № 07 (2814) (Журнал «Вокруг Света») - страница 12

Расставание светил

Звездные пары разрушаются в двух случаях. Во-первых, может вмешаться «звезда-злодейка», близкий пролет которой мимо пары может привести к обмену партнерами. Во-вторых, одна из звезд может взорваться как сверхновая. При этом в окружающее пространство выбрасывается значительная доля ее массы. Пару удерживает взаимная сила гравитации. Если сброшено больше половины суммарной массы, система становится гравитационно не связанной и звезды разлетаются. Кроме того, взрывы сверхновых асимметричны, в результате образующийся компактный объект получает в момент взрыва толчок, дополнительную скорость. Если она велика в сравнении с орбитальной скоростью в двойной, то это также приводит к разрыву звездной пары. Поэтому, несмотря на то, что более половины массивных звезд, порождающих затем нейтронные звезды или черные дыры, входит в двойные системы, доля двойных среди компактных объектов гораздо меньше.

О пользе двойных систем

Астрофизика выделяется среди естественных наук тем, что с объектами, которые она изучает, невозможно экспериментировать. Нельзя даже поднести к ним «поближе» какие-то приборы. Поэтому исследователи рады использовать любые варианты «природных датчиков». Звезды в тесной двойной как раз и служат «датчиками» друг для друга. Например, если в процессе обращения по орбите в системе случаются затмения, когда одна звезда заслоняет другую, то можно получить точную оценку их размеров. Но самое главное, конечно, это возможность измерять массы звезд в двойных системах.

Сейчас специалисты с легкостью говорят: «Чем массивнее звезда, тем...» А когда-то измерение масс звезд казалось фантастикой. В самом деле, как взвесить летящий в пустоте одинокий газовый шар? Иное дело, если вокруг него под действием силы тяжести крутится другой объект. В этом случае, измерив орбитальный период и скорости движения звезд в двойной системе, можно по законам небесной механики оценить их массы.

Самые точные измерения проведены для пульсаров в двойных системах. Пульсары, как известно, это нейтронные звезды, испускающие периодические радиоимпульсы. Строгая периодичность объясняется вращением этих компактных объектов вокруг своей оси. На сегодня известно почти 2 тысячи таких источников, и несколько десятков из них входят в двойные системы. Поскольку пульсары являются очень точными часами, то по ним можно проводить прецизионные измерения.

За открытие и изучение первой системы из двух нейтронных звезд — PSR B1913+16 — Рассел Халс и Джозеф Тейлор были удостоены Нобелевской премии по физике за 1993 год. Столь высокая оценка объяснима. В тесной системе из двух компактных объектов, согласно общей теории относительности (ОТО), должно происходить мощное излучение гравитационных волн. Волны уносят энергию и угловой момент, а значит, компоненты двойной сближаются. Эффект невелик, поэтому орбитальный период и другие параметры нужно измерять с очень высокой точностью. Было показано, что нейтронные звезды в системе PSR B1913+16 сближаются в полном соответствии с теорией. Кроме этого, удалось проверить и некоторые другие эффекты, предсказываемые ОТО. На сегодняшний день известно еще несколько пар нейтронных звезд. Большие надежды возложены на наблюдения очень тесной пары PSR J0737-3039, открытой в 2003 году. В ней обе нейтронные звезды видны как радиопульсары. Это позволяет достаточно быстро (за несколько лет) и точно измерить несколько эффектов ОТО. Нейтронные звезды в этой системе совершают 10 оборотов в сутки по орбите радиусом 400 тысяч километров — примерно как Луна вокруг Земли. Из-за гравитационных волн с каждым оборотом радиус орбиты сокращается на 0,7 миллиметра, и примерно через 85 миллионов лет они столкнутся. Но уже в недалеком будущем эта система может позволить проверить эффекты, которые пока недоступны для исследования с помощью других пульсаров.