В том, например, положении, какое изображено на прилагаемом чертеже, мы имеем при сложении двух наружных колец:
т. е. опять-таки тот же ряд цифр: 142857, только цифры 5 и 7 перенеслись в начало.
Исключение составляет лишь единственный случай, когда в результате получается 999999 (складываемые цифры дополняют друг друга до девяти):
Мало того. Тот же ряд цифр в той же последовательности мы получим и при вычитании чисел, написанных на кольцах. Например:
Исключение составляет случай, когда приведены к совпадению одинаковые цифры – тогда, разумеется, разность равна нулю. Но и это еще не все замечательные свойства нашего числа 142857. Умножьте его на 2, на 3, на 4, на 5 или на 6 – и вы получите, как и раньше, снова то же число, лишь передвинутое, в круговом порядке, на одну или несколько цифр:
142857 × 2 = 285714
142857 × 3 = 428571
142857 × 4 = 571428
142857 × 5 = 714285
142857 × 6 = 857142Вы видите, что произведение отличается от умножаемого лишь порядком цифр: группа цифр, стоящих впереди, очутилась на конце.
Пора, однако, объяснить, чем же обусловлены все загадочные особенности этого числа. Мы нападем на путь к разгадке, если продлим немного последнюю табличку и попробуем умножить наше число на 7: в результате получится 999999. Значит, число наше – не что иное, как седьмая часть 999999, т. е. дробь 142857/999999 = 1/7. И действительно, если вы станете превращать 1/7 в десятичную дробь, вы получите:
Наше загадочное число есть, следовательно, период бесконечной периодической дроби, которая получается при превращении 1/7 в десятичную. Становится понятным теперь, почему при удвоении и т. д. этого числа происходит лишь перестановка одной группы цифр на другое место. Ведь умножение этого числа на 2 делает его равным 2/7 и, следовательно, равносильно превращению в десятичную дробь уже не 1/7, а 2/7 Начав же превращать дробь 2/7 в десятичную, вы сразу заметите, что цифра 2 – один из тех остатков, которые у нас получались уже при превращении 1/7: ясно, что должен поэтому повториться прежний ряд цифр частного, но он начнется с другой цифры; другими словами, должен получиться тот же период, но только несколько начальных цифр его очутятся на конце. То же самое должно произойти и при умножении на 3, на 4, на 5 и на 6, т. е. на все числа, получающиеся в остатках. При умножении же на 7 мы должны получить целую единицу, – т. е. 0,9999… если представить ее в виде бесконечной периодической дроби.