Волос, увеличенный по толщине в биллион раз, был бы раз в 8 шире земного шара, а муха при таком увеличении была бы в 70 раз толще Солнца!
Взаимоотношение между миллионом, биллионом и триллионом можно с некоторою наглядностью представить следующим образом. В Петрограде теперь (1923 г.) примерно миллион жителей. Вообразите же себе длинный прямой ряд городов таких, как Петроград, – целый миллион их: в этой цепи столиц, тянущихся на семь миллионов верст (в 20 раз дальше Луны) будет насчитываться биллион жителей… Теперь вообразите, что перед вами не один такой ряд городов, а целый миллион рядов, т. е. квадрат, каждая сторона которого состоит из миллиона Петроградов и который внутри сплошь уставлен Петроградами: в этом квадрате будет триллион жителей… Одним триллионом кирпичей можно было бы, размещая их плотным слоем по твердой поверхности земного шара, покрыть все материки равномерным сплошным пластом высотою с четырехэтажный дом (8 сажен).
Если бы все видимые в сильнейшие телескопы звезды обоих небесных полушарий, т. е. не менее 30 миллионов звезд, – были обитаемы и населены каждая в 20 раз более, нежели наша Земля, – то и тогда на всех этих звездах, вместе взятых, едва насчитывался бы один триллион людей.
Наконец, последнюю иллюстрацию мы заимствуем из мира мельчайших частиц, составляющих все тела природы, – из мира молекул. Молекула по ширине меньше точки типографского шрифта этой книги примерно в миллион раз. После всех предшествовавших упражнений вы уже можете по этому числу до известной степени составить себе представление о малости молекулы. Теперь вообразите триллион таких молекул [43] , нанизанных вплотную на одну нитку. Какой длины была бы эта нить? Ею можно было бы семь раз обмотать земной шар по экватору!
В старинной (XVIII в.) «Арифметике» Магницкого, о которой мы не раз уже упоминали, приводится таблица названий классов чисел, доведенная до квадриллиона, т. е. единицы с 24 нулями [44] .
Вслед за этим помещены стихи:
Число есть бесконечно,
умом нам недотечно,
И никто знает конца,
кроме всех бога творца.
Несть бо нам определьно
тем же есть и бездельно
Множайших чисел искати
и больше сей писати
Превосходной таблицы,
умов наших границы
И аще кому треба
счисляти что внутрь неба
Довлеет числа сего
к вещем всем мира сего.
Наш старинный математик хотел сказать этими стихами, что так как ум человеческий не может обнять бесконечного ряда чисел, то бесцельно составлять числа больше тех, которые представлены в его таблице, «умов наших границе»; заключающиеся в ней числа (от единицы до квадриллионов включительно) достаточны для исчисления всех вещей видимого мира – достаточны даже для тех, «кому треба счисляти что внутрь неба».